
 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:1

 bodenseo Fundamentals of Perl

Funda-Funda-
mentalsmentals
ofof
PerlPerl
© Bernd Klein© Bernd Klein

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:2

 bodenseo Fundamentals of Perl

Redistribution for
non-commercial
use without
changes and with
author's credit
allow.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:3

 bodenseo Fundamentals of Perl

The chief architect
of Perl:
Larry Wall

He designed,
created (1987)
and is maintaining
Perl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:4

 bodenseo Fundamentals of Perl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:5

 bodenseo Fundamentals of Perl

History of PerlPerl 1.0 Perl 1.0
December 18, 1987December 18, 1987

Perl 2.0 Perl 2.0 (1988)(1988)
better regular expressionbetter regular expression

Perl 3.0 Perl 3.0 (1989)(1989)
support for binary data streamssupport for binary data streams

ProgrammingProgramming

PerlPerl
de facto referencede facto reference

19911991

Perl 4.0 Perl 4.0 (1993)(1993)
very shortlivedvery shortlived

Perl 5.0 Perl 5.0 (1994)(1994)
completely new interpretercompletely new interpreter

Perl 5.10.0Perl 5.10.0
(Dec 12, 2007)(Dec 12, 2007)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:6

 bodenseo Fundamentals of Perl

Parable of the Pe(a)rl

Again, the kingdom
of heaven is like
unto a merchant
man, seeking goodly
pearls:
Who, when he had
found one pearl of
great price, went
and sold all that he
had, and bought it.
(Gospel of Matthew, 13:45-46)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:7

 bodenseo Fundamentals of Perl

Perl is also an acronym

Practical Extraction and Report Language

it should never ever be spelled in caps

it is considered a shibboleth
(branding one as an outsider of the Perl community)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:8

 bodenseo Fundamentals of Perl

Family

Perl is a dynamic programming language
borrowing from many other programming
languages, such as

C
Bourne and other Shell scripting languages
AWK
Sed
Lisp

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:9

 bodenseo Fundamentals of Perl

Perl and Lisp

What Makes Lisp Different?

“Paradigms of Artificial Intelligence Programming” by Peter Norvig,
includes a section titled “What Makes Lisp Different?” that
describes seven features of Lisp. Perl shares six of these features;
C shares none of them.

“Lisp has all the visual appeal of oatmeal with fingernail clippings
mixed in.” (Larry Wall)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:10

 bodenseo Fundamentals of Perl

The Seven Features of Lisp

• Built-in Support for Lists
• Automatic Storage Management
• Dynamic Typing
• First-Class Functions
• Uniform Syntax
• Interactive Environment
• Extensibility
• History

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:11

 bodenseo Fundamentals of Perl

Features

Perl is basically a procedural language similar to C with
● variables
● expressions
● assignment statements
● brace-delimited code blocks
● control structures
● subroutines

Other importants features to simplify and facilitate many parsing,
text handling, and data management tasks.:
● lists from Lisp,
● associative arrays (hashes) from AWK,
● regular expressions from sed.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:12

 bodenseo Fundamentals of Perl

Features continued

In Perl 5 some features were added that support
● complex data structures,
● first-class functions (i.e., closures as values),
● object-oriented programming model. These

include references, packages, class-based
method dispatch, and lexically scoped variables,

● compiler directives (for example, the strict
pragma).

● ability to package code as reusable modules.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:13

 bodenseo Fundamentals of Perl

Availability of Perl Programmers
Availability of experienced and talented developers is a key requirement of corporate
adoption and retention of a programming language.

Quelle: http://www.odinjobs.com, Nov. 2007
Naveen Bala

(intitle:resume OR inurl:resume) LanguageName -intitle:jobs -resumes -apply

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:14

 bodenseo Fundamentals of Perl

Implementation

Plus a large collection of modules both written in C and
Perl.

Perl is an interpretated language.

The core interpreter is written in C

12 MB when packaged in a compressed tar file.
● compiled about 1 MB
● 150,000 lines of C code architectures.
● nearly 500 modules in the Perl-distribution, comprising
200,000 lines of Perl and an additional 350,000 lines of
C code.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:15

 bodenseo Fundamentals of Perl

Ways to run Perl
● Running the perl script included in the command line line by line via

the -e switch:

perl -e 'print "Hello, world\n"' #Unix
perl -e "print \"Hello, world\n\"" #Windows

● Running the perl command with the Perl program supplied via the
standard input stream.

echo "print 'Hello, world'" | perl -

or (unless ignoreeof is set):
% perl
print "Hello, world\n";
^D

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:16

 bodenseo Fundamentals of Perl

Exercise

Test the following command lines in a shell:

perl -e 'print "Hello, world\n"'
or
echo "print 'Hello, world'" | perl -

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:17

 bodenseo Fundamentals of Perl

Hello World in Java

class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello World!"); //
Display the string.
 }
}

It can be difficult just to say “Hello World”:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:18

 bodenseo Fundamentals of Perl

Ways to run Perl, continued

● Issue the perl command, passing Perl the name of your script as the
first parameter (after any switches):

perl testpgm

● On Unix systems: usage of a special #!-Line.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:19

 bodenseo Fundamentals of Perl

Hello, world!

#!/usr/bin/perl
print "Hello, world!\n";

shebang line

used to separate
statements

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:20

 bodenseo Fundamentals of Perl

Exercise

Use an editor to type in the „Hello Word“-Programm and
save it as hello.pl

#!/usr/bin/perl
print "Hello, world!\n";

Invoke the programm by typing in a shell:

perl hello.pl

execute the following command to run the script
directly:
chmod a+x hello.pl
hello.pl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:21

 bodenseo Fundamentals of Perl

How to ask questions ...

... and
remember
the
results!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:22

 bodenseo Fundamentals of Perl

Input and output

print "What is your name? ";
$name = <STDIN>;

We need a variable to hold a value in the following
example.
We'll use $name, a scalar variable.

The <STDIN>-construct is a way to get a line from the
terminal. (<> the diamond operator)

We'll continue with a
personalized version of „Hello World“,
which greets the user instead of the whole world

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:23

 bodenseo Fundamentals of Perl

Exercise

Save the previous script as input1.pl

Invoke the program!

print "What is your name? ";
$name = <STDIN>;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:24

 bodenseo Fundamentals of Perl

Improving the previous example

The program should output the Name together with an „hello“, which
can be done with the following print statement:

print "Hello, $name!\n";

If we append this line to the previous code, we get the
following output, if we use „Larry“ as input:

What is your name? Larry
Hello, Bernd
!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:25

 bodenseo Fundamentals of Perl

„a tiny flaw“

The exclamation mark is in the following line and not
behind the name.

chomp is a special funtion, which takes a scalar
variable as its sole argument and removes the trailing
newline from the string value of the variable.

The reason:
The value of $name has a terminating newline „\n“.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:26

 bodenseo Fundamentals of Perl

The complete script

#!/usr/bin/perl -w
print "What is your name? ";
$name = <STDIN>;
chomp ($name);
print "Hello, $name!\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:27

 bodenseo Fundamentals of Perl

Command-Line Options

The command-line options (or
switches, flags) come first on the
command line.

The next item is usually the name of
the script, followed by any additional
arguments (e.g. filenames) to be
passed into the script.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:28

 bodenseo Fundamentals of Perl

Some Perl Switches

-- forces switch processing to terminate, even if the next
argument starts with a minus.

-c the syntax of the script will be checked but the script will
not be executed.

-d runs the script under the Perl debugger

-h prints a summary of command-line options

-v prints the version and patch level of your Perl executable

-V Summary of the most important Perl configuration values

-w warnings about unset variables, redfined subroutines etc.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:29

 bodenseo Fundamentals of Perl

Perl compiler's C backend

perl -MO=C[,OPTIONS] foo.pl

This compiler backend takes Perl source and generates C
source code corresponding to the internal structures that perl
uses to run your program. When the generated C source is
compiled and run, it cuts out the time which perl would have
taken to load and parse your program into its internal semi-
compiled form. That means that compiling with this backend will
not help improve the runtime execution speed of your program
but may improve the start-up time. Depending on the
environment in which your program runs this may be either a
help or a hindrance.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:30

 bodenseo Fundamentals of Perl

Compiling Perl into C with perlcc

perlcc HelloWorld.pl -o Hello

This command generates an executable “Hello World” file.

It's possible to create the C source files with the -S option:

perlcc -S HelloWorld.pl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:31

 bodenseo Fundamentals of Perl

Exercise

Create C source code and
executables of some perl
scripts, e.g. HelloWorld.pl !

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:32

 bodenseo Fundamentals of Perl

Variables

Most of the variable names you create can begin with a letter or
underscore, followed by any combination of letters, digits, or
underscores, up to 255 characters in length.

$, @, or %

A variable always begins with the character that identifies its type:

Upper- and lowercase letters are distinct.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:33

 bodenseo Fundamentals of Perl

undef value

Variables have the undef value before they are first assigned or
when they become "empty." For scalar variables, undef evaluates to
zero when used as a number, and a zero-length, empty string ("")
when used as a string.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:34

 bodenseo Fundamentals of Perl

Variable assignment

The assignment operator (=) is used for variable assignment
with the appropriate data.

It takes a variable on the left side and gives it the value of
the expression on the right:

$count = 0;
$res = $b * ($a + 2.4534);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:35

 bodenseo Fundamentals of Perl

Assignments used as a value

An assignment has a value as well, i.e. the value is the value assigned.

Example:

$a = 1 + ($b = 7);

The value 7 is assigned to $b, than the value 7 as the value of
the assignment is added to 1 and 8 will be assigned to $a.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:36

 bodenseo Fundamentals of Perl

Data types
● A scalar is a single value; it may be a number, a string
or a reference

● A hash, or associative array, is a map from strings to
scalars; the strings are called keys and the scalars are
called values.

● An array is an ordered collection of scalars

● A file handle is a map to a file, device, or pipe which is
open for reading, writing, or both.

● A subroutine is a piece of code that may be passed
arguments, be executed, and return data

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:37

 bodenseo Fundamentals of Perl

Sigils to identify data type

$foo # a scalar

File handles and constants need not be uppercase, but
it is a common convention owing to the fact that there
is no sigil to denote them.

@foo # an array

%foo # a hash

FOO # a file handle or constant

&foo # a subroutine.
The & is optional)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:38

 bodenseo Fundamentals of Perl

Scalar Data

A scalar can be
● a number (like 7 or 8.2620) or
● a string of characters (like „hello“ or „data types and

variables“).

A scalar is essentially a simple variable, i.e. the simplest
kind that Perl manipulates.

Though you might think of numbers and strings as very
different things, Perl uses them nearly interchangeably.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:39

 bodenseo Fundamentals of Perl

Scalar Variables, cont.
A variable is a name for a container that holds a value.

The name of the variable is constant throughout the program, but
the value contained in that variable can change over and over
again throughout the execution of the program.

A scalar variable holds a single scalar value, which can be a
number, a string, or a reference. Scalar variable names begin with a
dollar sign followed by a letter, and then possibly more letters, or
digits, or underscores.

Perl is case sensitive, so upper- and lowercase letters are distinct.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:40

 bodenseo Fundamentals of Perl

Exercise

What is the value of $a after the assignment?

$a = 024 + 026;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:41

 bodenseo Fundamentals of Perl

Numbers
42 # an integer
-42 # a negative integer
3.1415 # a floating point
4.35E32 # scientific notation 4.35 times 10
to the 32th
0xff # hexadecimal literal
012 # octal literal

23_234_767 # underline for legibility

important note:
The underscore only works within literal numbers specified in the
program, but not in strings functioning as numbers or in data
read from somewhere else.
Similarily, the automatic conversion of a string to a number does
not recognize the „0“ and „0x“-prefixes.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:42

 bodenseo Fundamentals of Perl

Same Internal Format

Internally, Perl computes only with
double-precision floating-point values.

This means that Perl doesn't use integer values
internally.

Consequently, Perl doesn't supply special integer
operations.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:43

 bodenseo Fundamentals of Perl

Float Literals

A literal is the representation of a value in the text (source code) of
the Perl program, in other words a constant.

Perl accepts the complete set of floating-point literals to C
programmers.

Float Literals
1.75
7.25e45
-6.5e24
-12e-24
-1.2E-23

Integer Literals
1
2
-1
42
1_453_987_112

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:44

 bodenseo Fundamentals of Perl

Strings

A string consists of a sequence of characters.

Each character is an 8-bit value from the 256 character
set
(no special meaning of the NUL character)

The shortest possible string contains no characters.

The longest string is determined by the available
memory.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:45

 bodenseo Fundamentals of Perl

Double-Quoted Strings

The double-quoted string is similar to a C
string.

It's a sequence of characters enclosed in
double quotes.

The backslash can be used to specify
certain control characters.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:46

 bodenseo Fundamentals of Perl

Examples of Double-Quoted Strings

"hello world\n" # string with a newline

"umlaut \334" # umlaut ü (oktal)

"km\t1089" # a tab in a string

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:47

 bodenseo Fundamentals of Perl

Single Quoted-Strings

A single-quoted string is a sequence of characters enclosed in
single quotes.

The single quotes are marking the beginning and the ending of
the string, but are not part of the string itself.

Exceptions from the rule:
Backslashes have no special meaning, execpt if a backslash is
followed by another backslash:
To get a single quote into a single-quoted string, precede it by a
backslash.

Any character between the single quote marks is legal inside a
string.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:48

 bodenseo Fundamentals of Perl

Examples of Single-Quoted Strings

'Perl' # four characters: P, e, r, l

'don\'t' # five characters:
 d, o, n, single-quote, t

'' # the empty/null string

'home\\eve # includes one backslash

'hello\n' # not a newline!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:49

 bodenseo Fundamentals of Perl

String Conversions

Perl converts strings into numbers and vice versa
depending on the context in which they are used.

What is printed in the following script?

$fruit = "3 peaches";
$vegetable = "2 cabbages";
print $fruit + $vegetable;

The output is '5', the non number information is discarded.

The string concatenation opertator ist „.“ and not „+“

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:50

 bodenseo Fundamentals of Perl

Exercises

● Write a program that prompts for and
reads two numbers (on separate
lines of input) and prints the product
of the two numbers.

● Write a program using string
conversions.

● Experiment with single-quoted String
and double-quoted strings in a
program, i.e. assign string to
variables and print them.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:51

 bodenseo Fundamentals of Perl

Scalar Operators

If a string operand is provided where a numeric value is
expected, or vice versa, Perl automatically converts the
operand.

An operator expects either numeric or string operands or
a combination of both.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:52

 bodenseo Fundamentals of Perl

Numeric Operators

The ordinary operators for
● addition: +
● subtraction: -
● multiplication *
● division /

other operators:

exponentiation: **

modulus: %

logical comparison: <, <=, ==, >=, >, !=

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:53

 bodenseo Fundamentals of Perl

Precision

What makes 7.1 – 1.3 ?

5.8

Are you sure?

perl -e 'printf("%.25f\n", 7.1 - 1.3)';

5.7999999999999998223643161

Isn't it rather ...

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:54

 bodenseo Fundamentals of Perl

Operators for Strings

Concatenation: “.“ operator

Concatenating string with the “.” operator does not alter
either of the involved strings.

Examples:

“homer” . “ “ . “simpson”

“hello world” . “\n”

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:55

 bodenseo Fundamentals of Perl

String Comparison

Equal eq
Not equal ne
Less than lt
Greater than gt
Less than or equal to le
Greater than or equal to ge

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:56

 bodenseo Fundamentals of Perl

String Repetition Operator

The single lowercase letter x denotes the string repetition operator.
It takes takes its left operand (a string), and concatenates as many
copies of this string together as indicated by its right operand,
which is treated as a numeric value.

“Homer” x 3

“Marge” x (1 + 1)

(3 + 2) x (2.3 *3)

“HomerHomerHomer”

“MargeMarge”

“555555”

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:57

 bodenseo Fundamentals of Perl

Exercise

What is the value of the following comparisons?

8 < 30 true

8 lt 30 false

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:58

 bodenseo Fundamentals of Perl

Lists and Arrows

A list is ordered scalar data. An array is a variable that holds such a
list.

Each element of an array is a separate scalar variable with its own
scalar value.

The elements are ordered by indices 0,1,2, ...

Arrays can have any number of elements.

The smallest array has no elements, while the largest array can fill
all of available memory.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:59

 bodenseo Fundamentals of Perl

Arrays

The values of a list can be
● numbers,
● strings, or even
● another array.

Array variable names always begin with a @.
(Mnemonic: The @ sign starts an array variable because “at” and
“array” start with the same letter)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:60

 bodenseo Fundamentals of Perl

Example of an Array

#!/usr/bin/perl -w

@A = (" or ", " not ");
@prefix = (2,"B ");
@suffix = @prefix;
@william = (@prefix, @A);
@william = (@william, @suffix);

print “@william\n”;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:61

 bodenseo Fundamentals of Perl

List Constructor Operator

A list constructor operator is construed by y two scalar values
separated by two consecutive periods.

A list of values is created by starting at the left scalar value up through
the right scalar value, incremented by one each time.

(1 .. 5) (1,2,3,4,5)

(2.3 .. 5.3) (2.3,3.3,4.3,5.3)

(2.3 .. 6.2) (2.3,3.3,4.3,5.3)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:62

 bodenseo Fundamentals of Perl

Array Element Access

1 1 2 3 5 8

0 1 2 3 4 5
A List of Ordered Scalar Data

An Array
called
@Fib

13

6

$Fib[4]$Fib[0]

The @ of the array name becomes a $ on the element
reference!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:63

 bodenseo Fundamentals of Perl

Exercise

@Fib = (1, 1, 2, 3, 5, 8, 13, 21)

$i = 5;
$a = $Fib[4];
$b = $Fib[$i]++;
$c = $Fib[$i++];
$i = 5;
$d = $Fib[++$i];
print "$a, $b, $c, $d\n";
print "@Fib\n";

What's printed in the following script?

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:64

 bodenseo Fundamentals of Perl

Syntactic Sugar for List Literals

instead of defining an array like this:

@languages = (“english”, “french”,”german”);

one can use the “quote word” function:

@languages = qw(english french german);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:65

 bodenseo Fundamentals of Perl

Slice

Accessing a list of elements from the same array is called a slice:

@Fib = (1, 1, 2, 3, 5, 8, 13, 21);
($Fib[1],$Fib[2]) = ($Fib[2],$Fib[1]);
print "@Fib\n";

Syntactic sugar for slices:

@Fib[0,1] = @Fib[1,0] # swap the first two el.
@Fib[0,1]; # same as

($Fib[0],Fib[1])
@Fib[0,1,2]=@Fib[1,1,1]# first three like 2nd

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:66

 bodenseo Fundamentals of Perl

Arrays with no Boundaries

Assigning a value to an index beyond the existing ones
automatically extends the array (giving a value of undef to all
intermediate values, if there are any).

@b = (“to”, “be”);
$b[2] = “or”;
$b[5] = “be”;

print “@b\n”;

$b[3] and $b[4] will have the value “undef”.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:67

 bodenseo Fundamentals of Perl

Arrays
can be
seen or
used as
stacks!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:68

 bodenseo Fundamentals of Perl

push and pop

push(@list, some_value);

is equivalent to

@list = (@list, some_value);

pop removes the last element of a list (array):
$last_element = pop(@list);

An array can be used like a stack of information. New elements are
removed from and added to the right-hand side of the list. pop and
push are introduced into Perl to facilitate this task:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:69

 bodenseo Fundamentals of Perl

Shift and Unshift

The push and pop functions operate from the "right" side
of a list, i.e. the one with the highest subscripts.

The unshift and shift functions perform the
corresponding actions on the "left" side of a list, i.e. the
one with the lowest subscripts.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:70

 bodenseo Fundamentals of Perl

Shift and Unshift, Example

@colors = ("red", "green","blue");
$y = "yellow";
unshift(@colors, $y, "white", "black");
print "colors: @colors\n";
$most_left = shift(@colors);
print "most_left: $most_left\n";
print "colors: @colors\n";

remove the most left value and append it to
the right side:
push(@colors, shift(@colors));
print "colors: @colors\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:71

 bodenseo Fundamentals of Perl

The reverse Function

The reverse function returns a list in which the order of
the elements of its argument are reversed..

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:72

 bodenseo Fundamentals of Perl

 @simpsons = ("Lisa","Homer","Bart","Maggie","Marge");@simpsons = ("Lisa","Homer","Bart","Maggie","Marge");

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:73

 bodenseo Fundamentals of Perl

 @simpsons = ("Lisa","Homer","Bart","Maggie","Marge");@simpsons = ("Lisa","Homer","Bart","Maggie","Marge");
@simpsons = reverse(@simpsons);@simpsons = reverse(@simpsons);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:74

 bodenseo Fundamentals of Perl

sort Function

The sort function sorts its arguments as if they were single strings in
ascending ASCII order.

It returns the sorted list without altering the original list.

@simpsons = sort("Homer","Marge","Bart","Lisa","Maggie");
print "in alphabetical order: @simpsons\n";

@Fib = (1, 1, 2, 3, 5, 8, 13, 21);
@sorted = sort(@Fib);
print "@sorted\n";

1 1 13 2 21 3 5 8

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:75

 bodenseo Fundamentals of Perl

The chomp Function

The chomp function works both on array variables and on scalar
variables.

It takes off the end character of a specified string ONLY if that
character is a RETURN (Enter).

The return character is often created from input information or by
the coding itself.

It doesn't affect any other characters.

@simpsons=("Lisa\n","Homer\n","Bart","Maggie\n","Marge");
@simpsons = chomp(@simpsons);

@simpsons is now:
("Lisa","Homer","Bart","Maggie","Marge")

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:76

 bodenseo Fundamentals of Perl

The chop Function

The chop function is very similar to Chomp,
but it “chops off” the ending character of a
string no matter what it is.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:77

 bodenseo Fundamentals of Perl

<STDIN> as an Array

<STDIN> returns the next line of input in a scalar context.
However, in a list context, it returns all remaining lines up to end of
file.

Each line is returned as a separate element of the list.

@a = <STDIN>;
print "@a\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:78

 bodenseo Fundamentals of Perl

Exercise

Write a script that
reads a list of strings
on separate lines
and prints out the
list in reverse order.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:79

 bodenseo Fundamentals of Perl

Hashes

Hashes are better known as associative arrays.

Example:

%birthdays = ("Mike", "Apr 29", "Jane", "Feb 1",
"Freddy", "Dec 7");
print "Freddys birthday is:" . $birthdays{"Freddy"}
. " \n";

When defining a whole hash, we use the same representation that
we use for arrays – but we need two items for every element in the
associative array.

Values to individual elements of an hash are assigned by using
curly braces ({}) around the index key.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:80

 bodenseo Fundamentals of Perl

Exercise

Write a program that will
ask the user for a given
name and report the
corresponding family
name.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:81

 bodenseo Fundamentals of Perl

Control Structures

● Statement blocks
● conditional statements:
if/unless statement

● Loops:
● while/until statement
● for statement
● foreach statement

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:82

 bodenseo Fundamentals of Perl

Statement Blocks

A statement block is a sequence of statements, surrounded
by matching curly braces:

{
 first_statement;
 second_statement;
 third_statement;
 ...
 last_statement;
}

Each statement will be executed in sequence, from the first
to the last.

optional

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:83

 bodenseo Fundamentals of Perl

Conditional Statements

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:84

 bodenseo Fundamentals of Perl

condition

true false

Statements,
which will be

executed,
if the condition

is true.

Statements,
which will be

executed,
if the condition

is false.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:85

 bodenseo Fundamentals of Perl

The if/unless Statement

The if construct takes a control expression and a block. optionally,
it may have an else followed by a block as well:

if (some_expression) {
 true_statement_1;
 true_statement_2;
 true_statement_3;
} else {
 false_statement_1;
 false_statement_2;
 false_statement_3;
}

(Attention: Curly braces are required.
This eliminates the need for a "confusing dangling else" rule.)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:86

 bodenseo Fundamentals of Perl

The Control Expression

ExpressionExpression
getsgets

evaluatedevaluated

Result isResult is
evaluatedevaluated

for a stringfor a string

ExpressionExpression
evaluates toevaluates to

false if false if
string isstring is

empty or “0”empty or “0”
true otherwisetrue otherwise

0 false, as 0 converts to "0"
3-3 computes to 0, then converts to "0", so

 false
"" empty string, so false
"1" neither "" nor "0", so true
1 converts to "1", so true
"00" neither "" nor "0", so true
"0.000" also true for the same reason
undef evaluates to "", so false

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:87

 bodenseo Fundamentals of Perl

Example of an if statement

print "How old are you? ";
$age = <STDIN>;
chomp($age);
if ($age < 18) {
 print "Sorry, not old enough to vote!\n";
} else {
 print "Old enough! So go vote!\n";
 $possible_voter++;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:88

 bodenseo Fundamentals of Perl

Omitting the else part

print "How old are you? ";
$age = <STDIN>;
chomp($age);
if ($age < 18) {
 print "Sorry, not old enough to vote!\n";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:89

 bodenseo Fundamentals of Perl

unless

print "How old are you? ";
$age = <STDIN>;
chomp($age);
unless ($age < 18) {
 print "Old enough! So go vote!\n";
 $possible_voter++;
}

If you just want the else part and no then
part, you can use the unless statement:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:90

 bodenseo Fundamentals of Perl

elsif for more than two choices
if (expression_1) {
 one_true_statement_1;
 one_true_statement_2;
 one_true_statement_3;
} elsif (expression_2) {
 two_true_statement_1;
 two_true_statement_2;
 two_true_statement_3;
} elsif (expression_3) {
 three_true_statement_1;
 three_true_statement_2;
 three_true_statement_3;
} else {
 all_false_statement_1;
 all_false_statement_2;
 all_false_statement_3;
}

Every expression
(expression_1, expression_2
and expression_3) is
computed in turn. If an
expression is true, the
corresponding branch is
executed, and all remaining
control expressions and
corresponding statement
blocks are skipped. If no
expression evaluates to true,
the else branch is executed, if
there is one.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:91

 bodenseo Fundamentals of Perl

Switch Statement

Perl has no switch statements!

Solution: Hashes!

Use subroutine references in a hash to define what to do for each
case.

 $action_to_take = (
 1 => \&process_direct_deposits,
 2 => \&query_account_status,
 3 => \&do_exit,
);

Call with (instead of if):
$action_to_take{$menu_item}->();

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:92

 bodenseo Fundamentals of Perl

Loop Statements

Most programming languages need loops to repeat the
execution of a statement block while some condition is
true.

There are three types of loops:
● while loops,
● until loops, and
● for loops.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:93

 bodenseo Fundamentals of Perl

while Statement

 while condition

block

while (expression){
 statement_1;
 statement_2;
 statement_3;
}

Perl evaluates the control expression expression. If its value is
true, the body of the while statement (the block) is evaluated
once.

This is repeated until the control expression becomes false, at
which point Perl goes on to the next statement after the while
loop.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:94

 bodenseo Fundamentals of Perl

until Statements

If the word while is replaced by the word until, the test is
reversed (negated); that is, it executes the block as long as EXPR
remains false.

The condition is also tested before
the first iteration.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:95

 bodenseo Fundamentals of Perl

Leonardi Fibonacci
Leonardo da Pisa,
known as Fibonacci
figlio de Bonacio
(1180 - 1241)

one of the most important
mathematicians of the
Middle Ages

most important work:
Liber abbaci

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:96

 bodenseo Fundamentals of Perl

Fibonaccis rabit problem

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:97

 bodenseo Fundamentals of Perl

Exercise

Definition: A member of the sequence
of numbers such that
each number is the sum of the
preceding two. The first seven
numbers are 1, 1, 2, 3, 5, 8, and 13.

Formal Definition:
The nth Fibonacci number is
F(n) = F(n-1) + F(n-2),
where F(1)=1 and F(2)=1

Task:
Write a script to calculate F(n)!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:98

 bodenseo Fundamentals of Perl

Solution
#!/usr/bin/perl -w
print "Number? ";
$n = <STDIN>;
chomp($n);
if ($n >= 1) {
 $i = 1;
 $fib_n_1 = 0;
 $fib_n = 1;
 while ($i < $n) {

$help = $fib_n + $fib_n_1;
$fib_n_1 = $fib_n;
$fib_n = $help;
print "schnitt: " . $fib_n / $fib_n_1 ."\n";
$i++;

 }
 print "Fibonacci number $n: $fib_n\n";
} else {
 print "Please start with a number >= 1\n";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:99

 bodenseo Fundamentals of Perl

do {} while/until Statements

do

while condition

block

do {
 statement_1;
 statement_2;
 statement_3;
} while expression;

This construct is similar to
the while/until
statement, previously
discussed, but the block will
be - regardless of the
starting value of the
expression - at least once
executed.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:100

 bodenseo Fundamentals of Perl

from while to for

Somebody working solely with while loops will often encounter
typical structures like this:

initialization of a loop variable
affecting the test_exp:
$i = 0;
while (test_exp) {

a sequence of statements:
statement_1;
statement_2;
...
incrementing or decrementing the
loop variable

 $i++;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:101

 bodenseo Fundamentals of Perl

for statement

for (<INITS>; <TEST_EXP>; <RE_INITS>) {
body with statements

}

<INITS> consists of a comma separated list of loop variable
initializations.

<TEST_EXPR> is a condition which is affected by the variables
defined in <INITS>

<RE_INITS> consists of a comma separated list of assignments
to the loop variables.

initialization condition re-initialization

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:102

 bodenseo Fundamentals of Perl

Example

#!/usr/bin/perl -w

for ($i=1; $i < 100; $i++) {
 print "$i: " . $i**2 . "\n";
}

The following script prints the square numbers from 1 to 100.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:103

 bodenseo Fundamentals of Perl

infinite loops with while and for

for (;;) {

}

while (1) {

}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:104

 bodenseo Fundamentals of Perl

foreach Loops

The foreach loop iterates over a list of values by setting a control
variable to each successive element of the list:

foreach $VAR (LIST) {
 ...
}

It's not necessary to use the foreach keyword as foreach
is just a synonym for the for keyword.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:105

 bodenseo Fundamentals of Perl

Example

#!/usr/bin/perl -w

@l = (3, 4, 6, 8);
foreach $i (@l) {
 print $i**2 . "\n";
}

A “slight” modification with grave consequences:

@l = (3, 4, 6, 8);
foreach $i (@l) {
 $i = $i**2 . "\n";
 print $i;
}

@l has changed to (9, 16, 36, 64)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:106

 bodenseo Fundamentals of Perl

Labelling Loops

A label can be put on a loop to name it.
This label identifies the toop for the loop-control operators
● next
● last
● redo

If the loop operators are used with a label, they use the loop with
this label otherwise the operator refers to the innermost enclosing
loop.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:107

 bodenseo Fundamentals of Perl

next

next [LABEL]

The next command is like the continue statement in C; it
starts the next iteration of the loop:

line: while (<STDIN>) {
next line if /^#/; # discard comments

 ...
}

If there exists a continue block, it will get executed even on
discarded lines. If the LABEL is omitted, the command refers to the
innermost enclosing loop.

http://www.cs.cmu.edu/People/rgs/pl-compound.html#while
http://www.cs.cmu.edu/People/rgs/pl-compound.html#if

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:108

 bodenseo Fundamentals of Perl

Example with next
$n = <STDIN>; # the final number
print "$n\n";
$count = 0;
while ($count <= $n) {

set a conditional statement to interrupt
if ((($count % 4) == 0) && ($count != 0)) {

print "$count is divisible by 4!\n";
$count ++;
next;

}
go on as usual
print $count."\n";
$count ++;

}
continue {

print $count."\n";
$count++;

};
print "That's all! Task finished!";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:109

 bodenseo Fundamentals of Perl

last

The last command is like the break statement in C (as used in
loops); it immediately exits the loop in question.

If the LABEL is omitted, the command refers to the innermost
enclosing loop.

The continue block, if any, is not executed:

line: while (<STDIN>) {
last line if /^$/; # exit when done
 # with header

 ...
}

last [LABEL]

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:110

 bodenseo Fundamentals of Perl

Example with next and last

my $count = 0;
LINE: while (<STDIN>) {
 next LINE if /^#/; # skip comment lines
 next LINE if /^$/; # skip blank lines
 print; # $_
 last LINE if /eee/;
} continue {
 $count++;
}
print "$count lines have been input!\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:111

 bodenseo Fundamentals of Perl

redo

redo [LABEL]

The redo command restarts the loop block without evaluating the
conditional again. The continue block, if any, is not executed. If
the LABEL is omitted, the command refers to the innermost
enclosing loop.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:112

 bodenseo Fundamentals of Perl

Example

bad luck, an infinite loop:
$counter = 1;
while ($counter < 20) {
 redo if ($counter == 13);
 print "counter: $counter\n";
}
continue {

$counter++;
};

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:113

 bodenseo Fundamentals of Perl

Bare Blocks

It's obvious, that a block, regardless if labeled or not, is
semantically equivalent to a loop which executes just once.

 Exceptions:
● Not true for the blocks in eval {}, sub {} and do {}.
● loop controls don't work with if and unless either.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:114

 bodenseo Fundamentals of Perl

Trick for do {}

By embedding a bare block inside the curly braces of a do-
statements, we can use next and redo controls:

do {{
 next if;
 # some statements following
}} until;

A way to use last:
{
 do {
 last if ...;
 # some statements following
 } while ...;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:115

 bodenseo Fundamentals of Perl

do {} Trick, continued

DO_LAST: {
do {

DO_NEXT: {
 next DO_NEXT if ...;

 last DO_LAST if ...;
 # some statements following

}
} while ...;

}

To include both next and last in the do {} we need labels.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:116

 bodenseo Fundamentals of Perl

Case and Switch in Perl

Perl has no case or switch statement unlike many other
programming languages.

But it's very easy to simulate the behaviour with bare blocks.

SWITCH: {
 if (...) { $abc = 1; last SWITCH; }
 if (/.../) { $def = 1; last SWITCH; }
 if (/.../) { $xyz = 1; last SWITCH; }
 $nothing = 1;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:117

 bodenseo Fundamentals of Perl

Case and Switch in Perl, cont.

an alternative:

SWITCH: {
 /^abc/ && do { $abc = 1; last SWITCH; };
 /^def/ && do { $def = 1; last SWITCH; };
 /^xyz/ && do { $xyz = 1; last SWITCH; };
 $nothing = 1;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:118

 bodenseo Fundamentals of Perl

Subroutines

A subroutine, also called sub or a “user function” is
defined in a Perl program by using the following
construct:

sub subname {
 statement_1;
 statement_2;
 statement_3;
}

The name of the subroutine (subname) which is any name like
the names for scalar variables, arrays, and hashes.

The function names come from a different namespace, so a
scalar variable $foo, an array @foo, a hash %foo, and now a
foo would define different objects.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:119

 bodenseo Fundamentals of Perl

Subroutine Example

sub hello_you_know_who {
$number_of_times_called++;
print “Hello World!\n”;

}

This subroutine is called like this:
hello_you_know_who();

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:120

 bodenseo Fundamentals of Perl

Return Values

The value of the subroutine invocation is called the return value.

The return value of a subroutine is the value of the return statement
or of the last expression evaluated in the subroutine.

sub areaOfCircle {
 $radius = $_[0];
 return(3.1415 * ($radius ** 2));
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:121

 bodenseo Fundamentals of Perl

Positioning Subroutine definitions

Subroutine definitions can be placed anywhere in a script.

It's recommended to place the subroutines in one “area”, i.e. the
beginning (C-Style) or at the end (Perl-Style).

Subroutine definitions are always global, i.e. there are no local
subroutines.

In case there are two subroutines with the same name, the later one
overwrites the earlier one.

By default, any variable used within the body of a subroutine refers
to a global variable, but there are exceptions.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:122

 bodenseo Fundamentals of Perl

Arguments
In Perl, the subroutine call is followed by a an (possibly empty)

 list within parentheses.

The values of this list are automatically assigned to a special

variable named @_ for the duration of the subroutine.

sub ListSum {
 $sum = 0; # initialize the sum
 foreach $x (@_) {
 $sum += $x; # add element
 }
return $sum; # sum of all elements
}

print ListSum(1,2,3,4,5,6);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:123

 bodenseo Fundamentals of Perl

Global
and
local
Variables

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:124

 bodenseo Fundamentals of Perl

Subroutines: Local Variables

The @_ variable is local to a subroutine,
as well as $_[0], $_[1], $_[2],

Other local variables can be declared with

local(<comma separated list of variable
names>);

The my operator takes a list of variable names (instantiations) and
creates local versions of them.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:125

 bodenseo Fundamentals of Perl

Invoking a User Function
sub max {
 if ($_[0] > $_[1]) {

$_[0];
 } else {

$_[1];
 }
}
print("enter first number: ");
$number1 = <STDIN>;
chomp($number1);
print("enter second number: ");
$number2 = <STDIN>;
chomp($number2);

$max = max($number1, $number2);
print "max: $max\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:126

 bodenseo Fundamentals of Perl

Difference between my and local
Variables declared with local are
visible in the function where they
are declared and in every function
called by this function. Whereas
values declared with my are only
visible in the function in which they
are declared.

sub PrintX {
 print "x: $x\n";
}

sub UsingLocal {
 local($x) = 5;
 PrintX();
}

sub UsingMy {
 my($x) = 5;
 PrintX();
}

$x = 1;
PrintX();
UsingLocal();

$x = 1;
PrintX();
UsingMy();

x: 1
x: 5

x: 1
x: 1

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:127

 bodenseo Fundamentals of Perl

Another difference

Whereas my can only be used to declare
simple scalar, array, or hash variables with
alphanumeric names, local doesn't have
these restrictions.

Perl's built-in variables, such as $_, $1,
and @ARGV, cannot be declared with my,
but work fine with local.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:128

 bodenseo Fundamentals of Perl

Command-line Arguments

With Perl, comannd-line arguments are stored in an
array clalled @ARGV, i.e. $ARGV[0] contains the first
argument, $ARGV[1] contains the 2nd argument, and so
on.

#!/usr/bin/perl

$numArgs = $#ARGV + 1;
print "$numArgs command-line arguments.\n";
print "The arguments are:\n";
foreach $argnum (0 .. $#ARGV) {
 print "$ARGV[$argnum]\n";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:129

 bodenseo Fundamentals of Perl

Exercise: Ackermann function

A(m,n) = n + 1 if m = 0
A(m-1, 1) if m > 0 and n = 0
A(m-1, A(m,n-1) if m > 0 and n > 0

Write a programm using a recursive
funtion to calculate the Ackermann
funtion:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:130

 bodenseo Fundamentals of Perl

Ackermann Function in Perl

sub A {
 local($x,$y,$x_1, $y_1);
 $x = $_[0];
 $y = $_[1];
 if ($x == 0) {

$y+1;
 } elsif ($y == 0) {

$x_1 = $x - 1;
A($x_1, 1);

 } else {
$x_1 = $x - 1;
$y_1 = $y - 1;
A($x_1, A($x,$y_1));

 }
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:131

 bodenseo Fundamentals of Perl

Ackermann Function: Results

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:132

 bodenseo Fundamentals of Perl

Some Further Insides
addition:

a + b = a + 1 + 1 + ... + 1

multiplication
a x b = a + a + a

exponentiation
ab = a x a x ... x a

tetration (hyper-4)

ba = aa

b

b

b

b

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:133

 bodenseo Fundamentals of Perl

Filehandles and File Tests

A filehandle in a Perl program is the
name for an I/O connection between
a Perl process and the outside world.

STDIN is a filehandle, naming the
connection between the Perl process
and the standard input. STDOUT
(standard output) and STDERR
(standard error output) are other
filehandles.

It's customary to CAPITALIZE the names of filehandles.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:134

 bodenseo Fundamentals of Perl

What is a Filehandle

 A handle is a temporary name assigned to a file. A good choice
for filehandle (name) is an abreviated version of the filename.

In other words: A filehandle can be seen as a nickname for the
files used in the PERL script.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:135

 bodenseo Fundamentals of Perl

Opening and Closing

Filehandles have to be opened with the open()-statement, except
for STDIN, STDOUT and STDERR, which are automatically
opened.

$file = '/home/homer/addresses.txt';
open(INFO, $file); # Open the file

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:136

 bodenseo Fundamentals of Perl

Opening for reading

open(INFO, 'adresses.txt');
or
open(INFO, '<adresses.txt');

Perl
Program

adresses.txtINFO

Open a file for reading:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:137

 bodenseo Fundamentals of Perl

Opening for writing

open(NOTES, '>notes.txt');

Perl
Program

notes.txtNOTES

Open a file for writing:

If a file “notes.txt” already exists, it will be overwritten.

All existing data will be lost!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:138

 bodenseo Fundamentals of Perl

Opening for writing

open(NOTES,'>>notes.txt');

Perl
Program

notes.txtNOTES

Append to a file:

If a file “notes.txt” doesn't exists, open will
create one. A pointer is set to the end of the
file.

blah blah
yackety-yak
bushwa blah

blah

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:139

 bodenseo Fundamentals of Perl

Weird things about open

Parenthesis can be omitted, i.e.
open INFO, $file;

The filename can be dropped as well, if a scalar variable with the
same name as the filehandle exists:

$INFO = '<addresses.txt';
open INFO ;
@lines = <INFO>;
close(INFO);
print @lines;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:140

 bodenseo Fundamentals of Perl

Problems with open

Every forms of open returns true for success and false for
failure.

Reasons for failure:

Opening a file for output may fail, if the file is

write-protected, or if

the directory is not writable or accessible.

Opening a file for input may fail, if

the file doesn't exist or

cannot be accessed because of permissions;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:141

 bodenseo Fundamentals of Perl

The close Operator

If a script doesn't need the access to a file anymore, the file can
(may) be closed by the close operator:

close(FILEHANDLE);

Reopening a filehandle also closes the previously opened file
automatically.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:142

 bodenseo Fundamentals of Perl

open the deeper way

So far, we had a look at the “open à la C”, it's closest to shell.

sysopen is the command for those who need a finer precision
the C's fopen().

sysopen is a direct hook into the open system call.

sysopen HANDLE, PATH, FLAGS, [MASK]

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:143

 bodenseo Fundamentals of Perl

sysopen

sysopen HANDLE, PATH, FLAGS, [MASK]

HANDLE argument is a filehandle just as with open PATH
a literal path without greater-thans or less-thans or
pipes or minuses

FLAGS contains one or more values derived from
the Fcntl module that have been or'd together using
the bitwise "|" operator.

MASK optional; if present, it is combined with the
user's current unmask for the creation mode
of the file. Usually omitted.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:144

 bodenseo Fundamentals of Perl

sysopen, Constants from Fcntl

 O_RDONLY Read only
 O_WRONLY Write only
 O_RDWR Read and write
 O_CREAT Create the file if

 it doesn't exist
 O_EXCL Fail if the file

 already exists
 O_APPEND Append to the file
 O_TRUNC Truncate the file
 O_NONBLOCK Non-blocking access

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:145

 bodenseo Fundamentals of Perl

Examples with sysopen

Open a file for writing:
open(FH, "> $path");

corresponding sysopen:
sysopen(FH, $path, O_WRONLY | O_TRUNC |O_CREAT);

Open a file for appending:
open(FH, ">> $path");

corresponding sysopen:
sysopen(FH, $path, O_WRONLY | O_APPEND |O_CREAT);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:146

 bodenseo Fundamentals of Perl

Problems with open
A filehandle that couldn't be opened can still be used in the
program without a warning.

Ugly solution:

unless (open (INFO,">addresses.txt")) {
 print "I couldn't create addresses.txt\n";
} else {
 # the rest of your program
}

If you read from the filehandle, you'll get end-of-file right
away.

If you write to the filehandle, the data is silently
discarded.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:147

 bodenseo Fundamentals of Perl

The Perfect Solution

die
The die function takes a list within
optional parentheses, gives out that list on
the standard error output, and then ends
the Perl process (program) with a nonzero
exit status

unless (open (INFO,">addresses.txt")) {
 die "I couldn't create addresses.txt\n";
}
the rest of the program

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:148

 bodenseo Fundamentals of Perl

Open that File or Die

open (INFO,">addresses.txt")||
 die "I couldn't create addresses.txt\n";

the rest of the program

The || (logical-or) makes sure that the die command gets
executed, only when the result of open is false.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:149

 bodenseo Fundamentals of Perl

Read Lines from a File

$file = '/home/homer/addresses.txt';
open(INFO, $file); # Open the file
@lines = <INFO>; # Read it into an array
close(INFO); # Close the file
print @lines; # Print the array

Once a filehandle is open for reading, you can read lines from it the
way you read from standard input with STDIN

open (INFO,"/home/homer/addresses.txt");
while (<INFO>) {
 chomp;
 print "$_\n";
}

another way to do it:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:150

 bodenseo Fundamentals of Perl

Write to a File

If a filehandle is open for writing (or appending), you can print to it
by using the print command immediately followed by the filehandle
before the other arguments.

print RESULTS "The value is: $n\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:151

 bodenseo Fundamentals of Perl

Exercise: CopyCat

Write a Perl script to copy
data from one file into
another file.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:152

 bodenseo Fundamentals of Perl

Program: Copy File to File

#!/usr/bin/perl/

$in_file = "addresses.txt";
$out_file = ">addresses2.txt";

open(IN,$in_file) || die "cannot open $in_file
for reading: $!";
open(OUT,$out_file) || die "cannot create
$out_file: $!";
while (<IN>) { # read a line from file $a
into $_
 print OUT $_; # print that line to file $b
}
close(IN) || die "can't close $in_file: $!";
close(OUT) || die "can't close $out_file: $!";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:153

 bodenseo Fundamentals of Perl

(just) to be on the safe side ...

It's easy to accidentally overwrite some existing file.

There is a command to test if a file exists. With -e $filevar you can
check if a file exists.

$in_file = "addresses.txt";
if (-e $in_file) {
 print "The file $in_file already exists";
} else {
 print "The file $in_file doesn't exist";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:154

 bodenseo Fundamentals of Perl

Other file tests
-r File or directory is readable
-w File or directory is writable
-x File or directory is executable
-o File or directory is owned by user
-e File or directory exists
-z File exists and has zero size (directories are never empty)
-s File or directory exists and has nonzero size

(the value is the size in bytes)
-f Entry is a plain file
-d Entry is a directory
-l Entry is a symlink
-S Entry is a socket
-p Entry is a named pipe (a "fifo")
-b Entry is a block-special file (like a mountable disk)
-c Entry is a character-special file (like an I/O device)
-k File or directory has the sticky bit set
-T File is "text"
-B File is "binary"
-M Modification age in days
-A Access age in days
-C Inode-modification age in days

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:155

 bodenseo Fundamentals of Perl

The Gory Details with stat

You want the whole “story” of a file?

check if STDIN is interactive and prompt if it is
print "File name? " if (-t STDIN);
chop ($name = <STDIN>);

@file_data = stat($name);
@description =("device", "inode", "mode", "links",
"user id", "group id", "device id", "size",
"accessed", "modified", "changed", "blocksize",
"block count");

foreach $index (0 .. $#description) {
 printf "%-12s",$description[$index];
 print $file_data[$index],"\n";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:156

 bodenseo Fundamentals of Perl

Difference: stat() and lstat()

If the argument is not a symbolic link stat() and lstat() supply
the same results.

If you invoke the stat function on the name of a symbolic link, it will
return information about the file the symbolic link points at (if
accessible) and not information on the symbolic link itself.

lstat provides information about the symbolic link itself.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:157

 bodenseo Fundamentals of Perl

Exercises

1) Write a program to read a file and output
every line preceded with a line number
to another file

2) Write a program to read in a list of
filenames and then display which of the
files are readable, writable, and/or
executable, and which ones don't exist.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:158

 bodenseo Fundamentals of Perl

Reading Multiple Files

If no file handle is used with the diamond operator, Perl will check
the @ARGV variable. If @ARGV is empty, the diamond operator will
read from STDIN, i.e.from keyboard or from a redirected file.

while (<>) {
 print();
}

If called with

multiple_file_read.pl abc.txt efg.txt

the content of abc.txt followed by efg.txt will be printed.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:159

 bodenseo Fundamentals of Perl

Directory Access

chdir returns true when the script was able to change to the
requested directory and false if it wasn't.

chdir("/opt") || die "cannot cd to /opt ($!)";

The chdir function takes a single argument - an expression
evaluating to a directory name to which the current directory will be
set.

Parenthesis are optional

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:160

 bodenseo Fundamentals of Perl

“Strange” usages of chdir

if (chdir “/opt”) {
print “We got there!”;

} else {
print “We go to tmp instead!”;
chdir /tmp;

}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:161

 bodenseo Fundamentals of Perl

Globbing

The expansion of arguments like * or /home/homer/don* into a
list of matching filenames is called globbing.

To invoke globbing the pattern has to be put between angle
brackets or has to be the argument of the glob function.

@a = </opt/kde*>;
@a = glob("/etc/*ca*");

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:162

 bodenseo Fundamentals of Perl

Directory Handles

opendir DIRHANDLE,EXPR

opendir opens a directory named EXPR for processing by
"readdir", "telldir", "seekdir", "rewinddir", and "closedir".
It returns true if successful. DIRHANDLE may be an
expression whose value can be used as an indirect dirhandle,
usually the real dirhandle name.

Dirhandless have their own namespace separate from
Filehandles.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:163

 bodenseo Fundamentals of Perl

Reading a Directory Handle

When a directory handle is open, we can read the list of (file)names
with readdir, which takes a single parameter: the directory handle.

Each invocation of readdir in a scalar context returns the next
filename (basename) in a random order.

If there are no more names, readdir returns undef.

If readdir is invoked in a list context all the names are supplied as a
list.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:164

 bodenseo Fundamentals of Perl

readdir example

my $dir = '.';
opendir(DIR, $dir) or die $!;

while (my $file = readdir(DIR)) {
 # Use a regular expression to ignore

 # files beginning with a #
 next if ($file =~ /^[#]/);
 print "$file\n";
}

closedir(DIR);
exit 0;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:165

 bodenseo Fundamentals of Perl

Removing a File

Like the unix/linux command rm,
the Perl unlink command removes
one name for a file.

If there is – typically the case –
just one name for a file, unlink is
removing the name and the file
itself.

unlink (“test.pl”);

The unlink function can take a
 list of names to be unlinked:

unlink (“a.pl”, “b.pl”);
unlink <*~>;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:166

 bodenseo Fundamentals of Perl

Return value of unlink

The return value of unlink is the number of files successfully
deleted.

If this number is equal to the number of files in the filelist given to
unlink, everything is fine. If this number is smaller, you are faced
with the question, which files couldn't be deleted.

So stepping through the list might be better than the previous
approach:

foreach $file (<*~>)
 unlink($file) || warn "having trouble deleting
$file: $!";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:167

 bodenseo Fundamentals of Perl

Renaming

Another often needed function is the renaming of files.

It's easy to accomplish:

rename($old_file, $new_file);

Of course, rename should be “guarded”:
rename(Raider, Twix) || die “Renaming failed”

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:168

 bodenseo Fundamentals of Perl

rename: difference to mv

In Unix/Linux the following commands are equivalent:

mv twix /opt/comp/ and
mv twix /opt/comp/twix

Whereas in Perl the target filename has always to be given
explicitly:
rename(“twix”,”/opt/comp/twix”);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:169

 bodenseo Fundamentals of Perl

Hard and Soft Links

A hard link is indistinguishable from the original file.

The references to a file are counted.

content of file

Hardlink reference
counter: 2

Raider

Twix

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:170

 bodenseo Fundamentals of Perl

Restriction for Hardlinks

A hard link to a file must reside on the same mounted filesystem.

A hard link for a directory is not possible, because the filesystem is
strictly hierarchically organized. Allowing links to directories would
inevitably lead to a mish-mash.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:171

 bodenseo Fundamentals of Perl

Symbolic Links

Also called “soft links”

Chains of symbolic links are possible.

The contents of symlinks don't have to refer (point to) existing files
or directories.

If a symbolic link is used in a Perl command, the corresponding
linked file is used instead.

A symbolic link is a special file containing a pathname as data.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:172

 bodenseo Fundamentals of Perl

Creating Hard and Soft Links

link($old_filename, $new_filename)

A hardlink from the file $old_filename to $new_filename.
$old_filename must exist!

An example:
link(“raider”, “twix”)

|| die “cannot link raider to twix”;

Symbolic links are created in Perl with the symlink command:
symlink(“raider”, “twix”)

|| die “cannot link raider to twix”;

Now “raider” doesn't have to exist and “twix” can be on a different
filesystem.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:173

 bodenseo Fundamentals of Perl

Readlink

readlink(EXPR)

readlink EXPR

Returns the value of a symbolic link, if symbolic links are
implemented. If not, gives a fatal error. If there is some system error,
returns the undefined value and sets $! (errno). If EXPR is omitted, it
uses $_.

if (defined($x = readlink("twix"))) {
 print "twix points at '$x'\n";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:174

 bodenseo Fundamentals of Perl

Making Directories

mkdir(FILENAME,MODE)

Creates the directory specified by FILENAME, with permissions
specified by MODE. If it succeeds it returns 1, otherwise it returns 0
and sets $! (errno).

mkdir("sweets",0755) || die "cannot mkdir
sweets: $!";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:175

 bodenseo Fundamentals of Perl

Removing Directories

rmdir(FILENAME)

rmdir FILENAME

Deletes the directory specified by FILENAME if it is empty. If it
succeeds it returns 1, otherwise it returns 0 and sets $!
(errno). If FILENAME is omitted, uses $_..

rmdir("sweets") || die "cannot rmdir sweets:$!";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:176

 bodenseo Fundamentals of Perl

Linux/UNIX vs. Perl
File Permissions

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:177

 bodenseo Fundamentals of Perl

ls -l
jupiter:/home/Debra > ls -l
total 92
drwxr-xr-x 2 bernd users 35 2003-10-25 11:43 Dokumente
drwxr-xr-x 2 bernd users 35 2003-10-25 11:44 Mail
drwxr-xr-x 7 bernd users 287 2003-10-25 13:18 Kursunterlagen
-rw-r--r-- 1 bernd users 187 2003-11-10 19:36 zitat.txt
-rw-r--r-- 1 bernd users 46992 2003-11-11 19:09 shell.jpg
-rwxr--r-- 1 bernd users 42288 2003-11-11 19:09 pipe.gif

jupiter:/home/Debra >

ExecuteRead WriteType ExecuteRead Write ExecuteRead Write

108 91 42 3 75 6
Type Other PermissionsUser Permissions Group Permissions

xr -d xr w xr -

4 2 1

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:178

 bodenseo Fundamentals of Perl

Modifying Permissions

Under Linux/UNIX permissions on a file are changed with the
chmod command.

Similarly, Perl changes permissions using a function with the same
name.

The permissions on a file or directory define who can do what to
that file or directory.

The chmod function takes an octal numeric number as the mode
and a list of filenames. “Perl” tries to alter the permissions of all
the filenames to the indicated mode.

chmod(0644,”homer”,”lisa”,”bart”,”marge”);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:179

 bodenseo Fundamentals of Perl

File6

File5

File4

File3

File1

File7

File2

chmod

File6

File5

File4

File3

File1

File7

File2

chmod

1

1

1

0

1

0

155

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:180

 bodenseo Fundamentals of Perl

Return value of chmod

The return value of chmod is the number of files successfully
adjusted, regardless if the adjustment is different to the previous
setting.

foreach $file ("homer","marge") {
 unless chmod (0644,$file) {
 warn "Couldn't chmod $file: $!";
 }
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:181

 bodenseo Fundamentals of Perl

Change
Ownership

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:182

 bodenseo Fundamentals of Perl

chown
Every file, directory, device or whatever in the filesystem has an
owner and belongs to a group.

The owner and group of a file are set with the creation of the file,
but in many cases it's necessary to change them later on.

The owner and group of a file determine to whom the owner
and group permissions, i.e. read, write, and/or execute, apply .

The Perl command to accomplish this:
chown LIST

The LIST consists of UID, GID and a list of files to be changed

chown(1004, 4711, “apples”, “oranges”,”bananas”);

