bodenseo

Funda-
mentals

of
Perl

© Bernd Klein

’ © Bodenseo, Bernd Klein , 13

Eamcntals of Perl

Fundamentals of Perl

bodenseco

Redistribution for
non-commercial
use without
changes and with
author‘s credit
allow.

bodenseo Fundamentals of Perl

The chief architect
of Perl:
EIAVEL

He designed,
created (1987)
and is maintaining
Perl

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:3

bodenseo Fundamentals of Perl

.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

damentals of Perl

History of Perl

Perl

© Bodenseo, Bernd Klein , 13 Mar 200

bodenseo

Parable of the Pe(a)rl

- Fundamentals of Perl

Again, the kingdow
of heawvew iy like
unto- v merchant
pearls:

Who, when he had
found one pearl of
greal price, went
oand sold all that he

(Gospel of Matthew, 13:45-46)

© Bodenseo, Bernd Klein , 13 Mar

bodenseo

g Fundamentals of Perl

Perl is also an acronym

Practical Extraction and Report Language

it should never ever be spelled in caps

it is considered a shibboleth
(branding one as an outsider of the Perl community)

© Bodenseo, Bernd Klein , 13 Mar 2008,

.~ Fundamentals of Perl

bodenseo

Family

Perl is a dynamic programming language
borrowing from many other programming
languages, such as

C

Bourne and other Shell scripting languages
AWK

Sed

Lisp

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:8

bodenseo

- Fundamentals of Perl

Perl and Lisp

What Makes Lisp Different?

“Lisp has all the visual appeal of oatmeal with fingernail clippings
mixed in.” (Larry Wall)

“Paradigms of Artificial Intelligence Programming” by Peter Norvig,
includes a section titled “What Makes Lisp Different?” that
describes seven features of Lisp. Perl shares six of these features;
C shares none of them.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:9

bodenseo

. Fundamentals of Perl

The Seven Features of Lisp

 Built-in Support for Lists

« Automatic Storage Management
* Dynamic Typing

* First-Class Functions

* Uniform Syntax

* [nteractive Environment

» Extensibility

» History

© Bodenseo, Bernd Klein , 13 Mar 2008, . Folie:10

bodenseo

Fundamentals of Perl

Features

Perl is basically a procedural language similar to C with
* variables

* expressions

* assignment statements

* prace-delimited code blocks
e control structures

* subroutines

Other importants features to simplify and facilitate many parsing,
text handling, and data management tasks.:
e lists from Lisp,

e associative arrays (hashes) from AWK,
e regular expressions from sed.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:11

bodenseo Fundamentals of Perl

Features continued

In Perl 5 some features were added that support

e complex data structures,

e first-class functions (i.e., closures as values),

* object-oriented programming model. These
Include references, packages, class-based
method dispatch, and lexically scoped variables,

 compiler directives (for example, the strict
pragma).

* ability to package code as reusable modules.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:12

bodenseo Fundamentals of Perl

Availability of Perl Programmers

Availability of experienced and talented developers is a key requirement of corporate
adoption and retention of a programming language.

Rasumes in Search Engines (000) Nomalized Talent Availability

|00

HILN
a0c
B e e

T, 0 cogla
?\T:hﬂc

== | N SH

é"q, Cam line |

t faarch Trgre l

e Goegk
iMoo
i HE-

Feql Hylhon I-ll.l.h'ul H‘.Il:l

T
Prrl Pylhirn R by Php

Quelle: http://www.odinjobs.com, Nov. 2007
Naveen Bala

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:13

Fundamentals of Perl

bodenseo

Implementation

Perl is an interpretated language.
The core interpreter is written in C

Plus a large collection of modules both written in C and
Perl.

12 MB when packaged in a compressed tar file.

e compiled about 1 MB

* 150,000 lines of C code architectures.

* nearly 500 modules in the Perl-distribution, comprising
200,000 lines of Perl and an additional 350,000 lines of
C code.

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:14

bodenseo - Fundamentals of Perl

Ways to run Perl

* Running the perl script included in the command line line by line via
the -e switch:

perl -e 'print "Hello, world\n"' #Uni X
perl -e "print \"Hello, world\n\"" #W ndows

* Running the perl command with the Perl program supplied via the
standard input stream.

echo "print 'Hello, world " | perl -

or (unless ignoreeof is set):

% per |

print "Hello, world\n";
D

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:15

bodenseo

amentals of Perl

Exercise

Test the following command lines in a shell:

perl -e "print "Hello, world\n
or
echo "print '"Hello, world " | perl -

© Bodenseo, Bernd Klein , 13 Ma 008,

. Fundamentals of Perl

bodenseo

Hello World in Java

It can be difficult just to say “Hello World”:

cl ass Hel | oWwor | dApp {
public static void main(String[] args) {
Systemout.println("Hello Wrld!"); //
Di splay the string.

}
}

© Bodenseo, Bernd Klein , 13 Mar 20

bodenseo

" Fundamentals of Perl

Ways to run Perl, continued

* |ssue the perl command, passing Perl the name of your script as the
first parameter (after any switches):

perl testpgm

* On Unix systems: usage of a special #!-Line.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

" Fundamentals of Perl

Hello, world!

shebang line

- #!/usr/bin/ per|
print "Hello, worldl'\n"

"

used to separate
statements

© Bodenseo, Bernd Klein , 13 Mar 2

bodenseo

L Fundamentals of Perl

Exercise

Use an editor to type in the ,Hello Word“-Programm and

save it as hello.pl

#! [/ usr/ bi n/ perl
print "Hello, world!\n";

Invoke the programm by typing in a shell:

perl hell o. pl

execute the following command to run the script

directly:
chnod a+x hel | o. pl
hel | 0. pl

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:20

bodenseo

How to ask questions ...

3

.. and
remember
the

results!

© Bodenseo, Bernd Klein , 13

Fundamentals of Perl

bodenseo

Input and output

We'll continue with a
personalized version of ,Hello World®,
which greets the user instead of the whole world

We need a variable to hold a value in the following
example.
We'll use $nane, a scalar variable.

The <STDIN>-construct is a way to get a line from the
terminal. (<> the diamond operator)

print "What Is your nane? ";
$nane = <STDI N>;

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:22

bodenseo - Fundamentals of Perl

Exercise

Save the previous script as | nput 1. pl

print "What Is your nane? ";
$nane = <STDI N>;

Invoke the program!

© Bodenseo, Bernd Klein , 13 Mar

bodenseo Fundamentals of Perl

Improving the previous example

The program should output the Name together with an ,hello®, which
can be done with the following print statement:

print "Hello, $nanme!\n";

If we append this line to the previous code, we get the
following output, if we use ,Larry* as input:

What 1s your nane? Larry

Hel | o, Ber nd
!

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:24

bodenseo

Fundamentals of Perl

,»a tiny flaw*

The exclamation mark is in the following line and not
behind the name.

The reason:
The value of $nane has a terminating newline ,\n“.

chonp is a special funtion, which takes a scalar

variable as its sole argument and removes the trailing
newline from the string value of the variable.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:25

bodenseo ‘undamentals of Perl

The complete script

#! /usr/ bin/perl -w

print "What 1s your name? ",
$nane = <STDI N>;

chonmp ($nane);

print "Hello, $name!\n";

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Command-Line Options

The command-line options (or
switches, flags) come first on the
command line.

The next item is usually the name of
the script, followed by any additional
arguments (e.g. filenames) to be
passed into the script.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:27

bodenseo

Fundamentals of Perl

Some Perl Switches

- forces switch processing to terminate, even if the next
argument starts with a minus.

-C the syntax of the script will be checked but the script will
not be executed.

-d runs the script under the Perl debugger
-h prints a summary of command-line options
-V prints the version and patch level of your Perl executable

-V Summary of the most important Perl configuration values

-W warnings about unset variables, redfined subroutines etc.

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:28

bodenseo

Fundamentals of Perl

Perl compiler‘s C backend

perl -MO=C[, OPTI ONS] f oo. pl

This compiler backend takes Perl source and generates C
source code corresponding to the internal structures that perl
uses to run your program. When the generated C source is
compiled and run, it cuts out the time which perl would have
taken to load and parse your program into its internal semi-
compiled form. That means that compiling with this backend will
not help improve the runtime execution speed of your program
but may improve the start-up time. Depending on the
environment in which your program runs this may be either a
help or a hindrance.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:29

bodenseo

‘undamentals of Perl

Compiling Perl into C with per | cc

perlcc Hellowrld.pl -0 Hello

This command generates an executable “Hello World” file.

It's possible to create the C source files with the -S option:

perlcc -S Hell oWrl d. pl

© Bodenseo, Bernd Klein , 13 Mar 2008,

i of Perl

bodenseo

Exercise

Create C source code and
executables of some perl
scripts, e.g. HelloWorld.pl !

© Bodenseo, Bernd Klein , 13 Mar 200 |

bodenseo

ndamentals of Perl

Variables

A variable always begins with the character that identifies its type:

$, @ or %

Most of the variable names you create can begin with a letter or
underscore, followed by any combination of letters, digits, or
underscores, up to 255 characters in length.

Upper- and lowercase letters are distinct.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo ' Fundamentals of Perl

undef value

Variables have the undef value before they are first assigned or
when they become "empty.” For scalar variables, undef evaluates to
zero when used as a number, and a zero-length, empty string ()
when used as a string.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

"~ Fundamentals of Perl

Variable assignment

The assignment operator (=) is used for variable assignment
with the appropriate data.

It takes a variable on the left side and gives it the value of
the expression on the right:

$count 0

$res = $b ! ($a + 2.4534);

g Folie:34

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo 'Fundamentals of Perl

Assignments used as a value

An assignment has a value as well, i.e. the value is the value assigned.

Example:

$a=1+ ($b=7);

The value 7 is assigned to $b, than the value 7 as the value of
the assignment is added to 1 and 8 will be assigned to $a.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Data types

* A scalar is a single value; it may be a number, a string
or a reference

* An array is an ordered collection of scalars

* A hash, or associative array, is a map from strings to
scalars; the strings are called keys and the scalars are
called values.

e A file handle is a map to a file, device, or pipe which is
open for reading, writing, or both.

e A subroutine is a piece of code that may be passed
arguments, be executed, and return data

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:36

bodenseo Fundamentals of Perl

Sigils to identify data type

$foo # a scal ar

@oo0 # an array
% oo # a hash
FOO # a file handle or constant
& oo # a subrouti ne.
The & Is optional)

File handles and constants need not be uppercase, but
it is a common convention owing to the fact that there
IS no sigil to denote them.

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:37

bodenseo Fundamentals of Perl

Scalar Data

A scalar is essentially a simple variable, i.e. the simplest
kind that Perl manipulates.

A scalar can be

* a number (like 7 or 8.2620) or

* a string of characters (like ,hello® or ,data types and
variables®).

Though you might think of numbers and strings as very
different things, Perl uses them nearly interchangeably.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:38

bodenseo Fundamentals of Perl

Scalar Variables, cont.

A variable is a name for a container that holds a value.

The name of the variable is constant throughout the program, but
the value contained in that variable can change over and over
again throughout the execution of the program.

A scalar variable holds a single scalar value, which can be a
number, a string, or a reference. Scalar variable names begin with a
dollar sign followed by a letter, and then possibly more letters, or
digits, or underscores.

Perl is case sensitive, so upper- and lowercase letters are distinct.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:39

Exercise

What is the value of $a after the assignment? .

$a = 024 + 026;

© Bodenseo, Bernd Klein ,

bodenseo

Fundamentals of Perl

Numbers

42

-42

3. 1415

4. 35E32

to the 32th
Oxf f

012

H H H R

H H=

23 234 767 #

important note:

an | nteger

a negative I nteger

a floating point

scientific notation 4.35 tines 10

hexadecinal |i1teral
octal literal

underline for legibility

The underscore only works within literal numbers specified in the
program, but not in strings functioning as numbers or in data
read from somewhere else.

Similarily, the automatic conversion of a string to a number does
not recognize the ,,0“ and ,,0x“-prefixes.

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:41

Fundamentals of Perl

bodenseo

Same Internal Format

Internally, Perl computes only with
double-precision floating-point values.

This means that Perl doesn't use integer values
internally.

Consequently, Perl doesn‘t supply special integer
operations.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:42

bodenseo

- Fundamentals of Perl

Float Literals

A literal is the representation of a value in the text (source code) of
the Perl program, in other words a constant.

Perl accepts the complete set of floating-point literals to C

programmers.
Float Literals Integer Literals
1. 75 1
[.25e45 2
- 6. 5e24 -1
-12e-24 42

-1.2E-23 1 453 987 112

© Bodenseo, Bernd Klein , 13 Mar 2008, | Folie:43

bodenseo ~ Fundamentals of Perl

Strings

A string consists of a sequence of characters.

Each character is an 8-bit value from the 256 character
set

(no special meaning of the NUL character)
The shortest possible string contains no characters.

The longest string is determined by the available
memory.

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:44

Fundamentals of Perl

bodenseo

Double-Quoted Strings
The double-guoted string is similarto a C

string.

lt's a sequence of characters enclosed in
double guotes.

The backslash can be used to specify
certain control characters.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:45

bodenseo "~ Fundamentals of Perl

Examples of Double-Quoted Strings

"hello world\n" # string wth a newl i ne
"um aut \ 334" # um aut 0 (oktal)

"kmt1089" # a tab in a string

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Single Quoted-Strings

A single-quoted string is a sequence of characters enclosed in
single quotes.

The single quotes are marking the beginning and the ending of
the string, but are not part of the string itself.

Any character between the single quote marks is legal inside a
string.

Exceptions from the rule:

Backslashes have no special meaning, execpt if a backslash is
followed by another backslash:

To get a single quote into a single-quoted string, precede it by a
backslash.

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:47

bodenseo) ~ Fundamentals of Perl

Examples of Single-Quoted Strings

' Per |’ # four characters: P, e, r, |

‘don\'t' # five characters:
d, o, n, single-quote, t

Y # the enpty/null string
"hone\\eve # 1 ncludes one backsl ash

"hel | o\ n' # not a new I ne!

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Fundamentals of Perl

String Conversions

Perl converts strings into numbers and vice versa
depending on the context in which they are used.

What is printed in the following script?

$fruit = "3 peaches”;
$veget abl e = "2 cabbages";
print $fruit + $veget abl e;

The output is 5°, the non number information is discarded.
The string concatenation opertator ist ,.“ and not ,+“

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:49

bodenseo Fundamentals of Perl

Exercises

* Write a program that prompts for and
reads two numbers (on separate
lines of input) and prints the product
of the two numbers.

* Write a program using string
conversions.

* Experiment with single-quoted String
and double-quoted strings in a
program, i.e. assign string to
variables and print them.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:50

Fundamentals of Perl

bodenseo

Scalar Operators

An operator expects either numeric or string operands or
a combination of both.

If a string operand is provided where a numeric value is
expected, or vice versa, Perl automatically converts the
operand.

Folie:51

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

- Fundamentals of Perl

Numeric Operators

The ordinary operators for
e addition: +

e subtraction:

e multiplication *

e division /

other operators:

exponentiation: *x

modulus: %

[
[
[
V
[
V
[

logical comparison: <, <

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:52

bodenseo . Fundamentals of Perl

Precision

What makes 7.1 — 1.3 ?

5.8

Are you sure?

Isnt it rather ...

5.7999999999999998223643161

perl -e ‘printf("%.25f\n”, 7.1 - 1.3);

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

ndamentals of Perl

bodenseo

Operators for Strings

€ &«

Concatenation: “.“ operator

&€ ”

Concatenating string with the “.” operator does not alter
either of the involved strings.

Examples:

“homer” . * “ . “sinpson”

“hello world” . “\n”

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

String Comparison

Equal

Not equal

Less than

Greater than

Less than or equal to
Greater than or equal to

© Bodenseo, Bernd Klein , 13 Mar 2

€q
ne
| t

| e
ge

- Fundamentals of Perl

ndamentals of Perl

bodenseo

String Repetition Operator

The single lowercase letter x denotes the string repetition operator.
It takes takes its left operand (a string), and concatenates as many
copies of this string together as indicated by its right operand,
which is treated as a numeric value.

“Honmer” x 3 s> “ Honer Honer Honer ”

“Marge” x (1 + 1) mssssslp “ MargeMarge”

(3 +2) x (2.3 *3) msmmp> “ 555555

 Folie:s6

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

amentals of Perl

Exercise

What is the value of the following comparisons?

8 < 30 m——- true

8 It 30 = fal se

© Bodenseo, Bernd Klein , 13 ‘

Fundamentals of Perl

bodenseo

Lists and Arrows

A list is ordered scalar data. An array is a variable that holds such a
list.

Each element of an array is a separate scalar variable with its own
scalar value.

The elements are ordered by indices 0,1,2, ...
Arrays can have any number of elements.

The smallest array has no elements, while the largest array can fill
all of available memory.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:58

bodenseo

ndamentals of Perl

Arrays

The values of a list can be
* numbers,

* strings, or even

e another array.

Array variable names always begin with a @.

(Mnemonic: The @ sign starts an array variable because “at” and
“array” start with the same letter)

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:59

: of Perl

bodenseo

Example of an Array

#! fusr/ bin/perl -w

@ = (" or ", " not ");

@pref i x (2,"B ");

@uf fix @r ef i x;

@illiam= (@refix, @);
@ulliam= (@ulliam @uffix);

print “@ulliamn”;

© Bodenseo, Bernd Klein , 13 Mar 2008, | Folie:60

. Fundamentals of Perl

bodenseo

List Constructor Operator

A list constructor operator is construed by y two scalar values
separated by two consecutive periods.

A list of values is created by starting at the left scalar value up through
the right scalar value, incremented by one each time.

(1 .. 5) o (1,2, 3,4, 5)

(2.3 .. 5.3) = (2.3,3.3,4.3,5. 3)

(2.3 .. 6.2) [=== - (2.3 3.3, 4.3,5.3)

Folie:61

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo ~ Fundamentals of Perl

Array Element Access

A List of Ordered Scalar Data

0 1 2 3 4 5 6
AnArray (@ N1 121 3(5) 8 13
called <\) <\)
sn N
$Fi b[O] $Fi b[4]

The @ of the array name becomes a $ on the element
reference!

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

i damentals of Perl

Exercise

What‘s printed in the following script?

@ib=1(1, 1, 2, 3, 5 8, 13, 21)

$i = b5;

$a = 3$Fi b[4];

$b = $Fi b[$i] ++;

$c = $Fi b[$i +4] ;

$i = b5;

$d = $F|b ++$i

print "%a, $b, $C $d\ n";
print " @i b\n"

© Bodenseo, Bernd Klein , 13 Mar 200

bodenseo ~ Fundamentals of Perl

Syntactic Sugar for List Literals

instead of defining an array like this:

@ anguages = (“english”, “french”,”german”);

one can use the “quote word” function:

@ anguages = gw(english french gernman);

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Slice

Accessing a list of elements from the same array is called a slice:

@ib=(1, 1, 2, 3, 5 8, 13, 21),;
($Fib[1],$Fib[2]) = ($Fi b[2], $Fi b[1]);
print " @i b\n";

Syntactic sugar for slices:

@1b[0,1] = @ib[1,0] # swap the first two el.
@i b[0, 1]; # sane as

($Fi b[O], Fib[1])
@i b[0,1,2]=@1b[1,1,1]# first three |Iike 2nd

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

'~ Fundamentals of Perl

Arrays with no Boundaries

Assigning a value to an index beyond the existing ones
automatically extends the array (giving a value of undef to all
intermediate values, if there are any).

@ = (“to’, “be’):

$b[2] = “or";
$b[5] = “be”;
print “@\n”;

$b[3] and $b[4] will have the value “undef”.

¥ Folie:66

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseco

amentals of Perl

Arrays
can be
seen or
used as
stacks!

© Bodenseo, Bernd Klein , 1

bodenseo

Fundamentals of Perl

push and pop
An array can be used like a stack of information. New elements are

removed from and added to the right-hand side of the list. pop and
push are introduced into Perl to facilitate this task:

push(@i st, sone_val ue);
IS equivalent to

@ist = (@i1st, sone_val ue);

pop removes the last element of a list (array):
$l ast _el enent = pop(@i st);

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:68

bodenseo " Fundamentals of Perl

Shift and Unshift

The push and pop functions operate from the "right” side
of a list, i.e. the one with the highest subscripts.

The unshift and shift functions perform the
corresponding actions on the "left” side of a list, i.e. the
one with the lowest subscripts.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:69

bodenseco Fundamentals of Perl

Shift and Unshift, Example

@olors = ("red", "green","blue");

$y = "yell ow';

unshift(@olors, $y, "white", "black");
print "col ors: @ol ors\n";

$nost _left = shift(@ol ors);

print "nost_left: $nost_|eft\n";

print "colors: @ol ors\n";

renove the nost |left value and append it to
the right side:

push(@ol ors, shift(@olors));

print "colors: @ol ors\n";

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo ‘'undamentals of Perl

The reverse Function

The reverse function returns a list in which the order of
the elements of its argument are reversed..

© Bodenseo, Bernd Klein , 13 Mar 0

bodenseo Fundamentals of Perl

@simpsons = (”Lisa”,”l-lomer”,”Baﬂ”,”Maggie”,”Marge?ﬁ e

-

Ill}“ ..‘.‘.‘l r'- e

.!,Hi_ﬁ-

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

@y Im r)JJ 1S = (”I.lsa” “Homer”,’Bart”,”Maggie”,’Marge”’);

o)

SIMPSONS) = reverse(snmpsons); -

)
m

© Bodenseo, Bernd Klein , 15 Mar 2008, Folie:73

bodenseo ndamentals of Perl

sort Function

The sort function sorts its arguments as if they were single strings in
ascending ASCII order.

It returns the sorted list without altering the original list.

@i npsons = sort("Honer","Marge","Bart","Lisa", "Maggi e");
print "in al phabetical order: @i npsons\n";

@ib=1(1, 1, 2, 3, 5, 8, 13, 21);
@orted = sort (@i b),;
print "@orted\n";

. 1

1113 2 21 3 5 8

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

The chomp Function

The chonp function works both on array variables and on scalar
variables.

It takes off the end character of a specified string ONLY if that
character is a RETURN (Enter).

The return character is often created from input information or by
the coding itself.

It doesn't affect any other characters.

@1 npsons=("Lisa\n","Honer\n","Bart", "Maggi e\ n", " Marge") ;
@1 npsons = chonp(@I npsons) ;

@i npsons is now:
("Lisa","Honer","Bart", "Maggi e", "Marge")

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:75

bodenseo ndamentals of Perl

The chop Function

The chop function is very similar to Chomp,
but it “chops off” the ending character of a
string no matter what it is.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:76

bodenseo

ndamentals of Perl

<STDIN> as an Array

<STDIN> returns the next line of input in a scalar context.
However, in a list context, it returns all remaining lines up to end of
file.

Each line is returned as a separate element of the list.

@ = <STD N>;
print "@\n";

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Exercise

Write a script that
reads a list of strings
on separate lines
and prints out the
list in reverse order.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Fundamentals of Perl

Hashes

Hashes are better known as associative arrays.

When defining a whole hash, we use the same representation that

we use for arrays — but we need two items for every element in the
associative array.

Values to individual elements of an hash are assigned by using
curly braces ({}) around the index key.

Example:

i rt hdays = ("M ke", "Apr 29", "Jane", "Feb 1",
"Freddy", "Dec 7");

print "Freddys birthday is:" . $birthdays{"Freddy"}
"\n",

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:79

bodenseo

. Fundamentals of Perl

Exercise

Write a program that will
ask the user for a given
name and report the

corresponding family
name.

© Bodenseo, Bernd Klein , 13 Mar 200

" Fundamentals of Perl

bodenseo

Control Structures

e Statement blocks

e conditional statements:
If/unless statement

* oops:
swhile/until statement
ofor statement
foreach statement

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:81

bodenseo ‘undamentals of Perl

Statement Blocks

A statement block is a sequence of statements, surrounded
by matching curly braces:

{
first _statenent;
second_st at enent ;
third statenent;
| ast st at enent 04 optional
}

Each statement will be executed in sequence, from the first
to the last.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Fundamentals of Perl

Conditional Statements

¢ || ,,

© Bodenseo, Bernd Klein , 13 Mar 2008, , Folie:83

bodenseo

- Fundamentals of Perl

condition
true false
Statements, Statements
which will be which will be ’
executed, executed
if the condition if the condition
IS true. is false.

© Bodenseo, Bernd Klein , 13 Mar 08,

bodenseo

Fundamentals of Perl

The if/unless Statement

The if construct takes a control expression and a block. optionally,
it may have an else followed by a block as well:

| f (sone_expression) {
true _statenent 1,
true_statenent 2;
true_statenent 3;

} else {
fal se_statenent 1,
fal se _statenent 2;
fal se_statenent 3;

}

(Attention: Curly braces are required.
This eliminates the need for a “confusing dangling else” rule.)

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:85

bodenseo

entals of Perl

The Control Expression

evaluated ~ for a string

 true otherwise

0 fal se, as 0 converts to "0O"

3-3 conputes to 0, then converts to "0", so
fal se

" enpty string, so false

"1 neither "" nor "0", so true

1 converts to "1", so true

" 00" neither "" nor "0", so true

"0.000" also true for the sanme reason

undef eval uates to "", so false

" Fundamentals of Perl

LD,

bodenseo

Example of an | f statement

VOTE

print "How old are you? ";

$age = <STDI N>;

chonmp($age) ;

I f ($age < 18) {
print "Sorry, not old enough to vote!\n";

} else {
print "Ad enough! So go vote!\n";

$possi bl e_vot er ++;

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:87

bodenseo ~ Fundamentals of Perl

Omitting the el se part

LD,

VOTE

print "How old are you? ";
$age = <STDI N>;
chonmp($age) ;
I f ($age < 18) {
print "Sorry, not old enough to vote!\n";
}

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo ~ Fundamentals of Perl

unl ess

If you just want the else part and no then @
part, you can use the unless statement: v D TE

print "How old are you? "; W

$age = <STDI N>;

chonp($age) ;

unl ess ($age < 18) {
print "Ad enough! So go vote!\n";
$possi bl e_vot er ++;

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Fundamentals of Perl

el si f for more than two choices

| f (expression_1) {
one true_statenent 1;
one _true_statenent 2;
one _true_statenent 3;

} elsif (expression_ 2) {
two true_statenent 1,
two true_statenent 2;
two_true_statenent 3;

} elsif (expression 3) {
three true_statenent 1;
three true_statenment 2;
three true_statenent 3;

} else {
all _false statenent 1;
all false statenent 2;
all fal se statenent 3;

© Bodenseo, Bernd Klein , 13 Mar 2008,

Every expression
(expression_1, expression_2
and expression_J3) is
computed in turn. If an
expression is true, the
corresponding branch is
executed, and all remaining
control expressions and
corresponding statement
blocks are skipped. If no
expression evaluates to true,
the else branch is executed, if
there is one.

Folie:90

bodenseo

Switch Statement

- Fundamentals of Perl

Perl has no switch statements!

Solution: Hashes!

Use subroutine references in a hash to define what to do for each
case.

$action to take = (
1 => \&process _direct _deposits,
2 => \ &query_account _st at us,
3 => \&do _exit,
);

Call with (instead of if) :
$action to take{$nenu itent->();

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:91

bodenseo ndamentals of Perl

Loop Statements

Most programming languages need loops to repeat the

execution of a statement block while some condition is
true.

There are three types of loops:
* while loops,

* until loops, and

* for loops.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:92

bodenseo i damentals of Perl

whi | e Statement

whi |l e (expression){
st at enent 1;
st at enent _2;
st at enent _3;

Perl evaluates the control expression expr essi on. If its value is
true, the body of the while statement (the block) is evaluated

once.

This is repeated until the control expression becomes false, at
which point Perl goes on to the next statement after the while

loop.

© Bodenseo, Bernd Klein , 13 Mar 2008

bodenseo Fundamentals of Perl

unti1 | Statements

If the word whi | e is replaced by the word until, the test is

reversed (negated); that is, it executes the block as long as EXPR
remains false.

The condition is also tested before
the first iteration.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:94

bodenseo

Leonardi Fibonacci

Leonardo da Pisa,
known as Fibonacci
figlio de Bonacio

(1180 - 1241)

one of the most important
mathematicians of the

Middle Ages

most important work:

Liber abbaci

© Bodenseo, Bernd Klein , 13 Mar 2008,

Fundamentals of Perl

'L‘L.1 i
grmnar L E TS 08 e - ﬂﬂis‘nlﬂﬂt@ﬁdlafﬂ-hm'
e IR W parn - ol SRefpmd | T
£ avpUET R AN o ST e o bl
et geemE g o quilleemeed g a4 fm
pra o Tnwirteartipna . qaseinm fad s
T FIFIIEII_IIE Wl fakh b FAfcl¥ T e maeit
am T Eq‘i:g:au‘.an'-rﬂ'__:w A gt il Tl ore 1 b
FHAT e et AN I | F pommT | et 5
qﬂi‘l;ﬁ ATl s e R '-'[lll"#ﬂ'ﬂ'ﬂ.'ﬁ'rﬂ_ﬂ' A FHEARE e
ol TR AL FO I S 4 e e i L (T
qmurufl.ﬂhi"_tﬂﬁﬁfﬂ‘m Ip = g0 upnB e wiE
prrt s o T e ¢ e or T pare - 4
G RB el Ty o & Fomest e uleines mieerie
B o ém#lﬂ P B g T i foce T cpie 4
St POIED SHEE e gl by g s FLY. 3 v
e W-i:"h.-x:_'ﬂl- LT A :anh.ﬂ..qﬁql’ﬂr"_l-ﬂ._!ﬂi-
1 e e M D T T ST A oo ing o) TS WS
W el 2 g o b e B alicp, - -
foe ot Fel< g #rME 2 Waniar o dic mehd'
us iznmﬁ'qtyﬂr-ﬁﬂhﬁnh%‘iﬁn‘mﬁhqaﬁgq;#
Ch T ﬂ?__ﬁﬂf‘." L R T, B B
AT ERA o A e b e D i T arE
A AR E e e b e iR g 4 Pring
W cox dhpumstE o s o RS T g
£rara irﬂﬂrhﬂ'ﬁ'|?§|+hﬂ WG = ronamEr
Jrm it 0 4 fEfiergnae s - - iRty T 1 R

| EESTES 5k Ly e g Y pe i =
s - : =y bt renaanchi e 97
. rather fie FHRBHT, F eren BTt w0 Bt gmm ofHA
EM"""EF"?}" “ {ﬁim;ﬁj'n-- i it -
v F m}ﬂfﬂ I::-h- E‘_'EH e g b E - %
A f e fep wbguill, fia B K - v R
'ﬁ“ﬁﬁﬁ"! G T o IR e TR
C Mﬁl?ﬁmﬂ#qﬁq}-ﬁ,ﬁiln&qhm'yﬁ

—

|l SR Bl et e o e it A

I-ﬂmﬂuh-ilﬂvﬁ&-l:ufvﬁﬂh. i ok 1 F it
'*‘?,ﬂrﬁﬁpﬁ}iyrhﬂhﬂ'hﬁﬁlﬂ?[ﬁg;ﬁg
LE pﬂﬂlfqnﬂ:fifrbﬁfne{ﬁ'ﬁli‘:ﬂ'l’#: B, -
e AT e 3 S PnrE R I T ILT Tl < e

[T = B L PiRa bl 37 0 - ool R BRI ¢

Folie:95

I damentals of Perl

(LJZQH& Fibonaccis rabit problem
Rt

bodenseo

—y

Lol
; .

© Bodenseo, Bernd Klein , 13 Mar

bodenseo - Fundamentals of Perl

Exercise

Definition: A member of the sequence
of numbers such that

each number is the sum of the
preceding two. The first seven
numbers are 1, 1,2, 3, 5, 8, and 13.

Formal Definition:

The nth Fibonacci number is
F(n) = F(n-1) + F(n-2),
where F(1)=1 and F(2)=1

Task:
Write a script to calculate F(n)!

© Bodenseo, Bernd Klein , 13 Mar 2008,

! Folie:o7

. SEsEesY | Fundamentals of Perl

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

do {
st at enent _1;
st at enent _2;
st at enent _3;
} whil e expression;

© Bodenseo, Bernd Klein , 13 Mar 2

do {} while/until

J damentals of Perl

Statements

This construct is similar to
thewhi | e/ unti |

statement, previously
discussed, but the block will
be - regardless of the
starting value of the
expression - at least once
executed.

 Fundamentals of Perl

bodenseo

from while to for

Somebody working solely with whi | e loops will often encounter
typical structures like this:

initialization of a loop variable
affecting the test exp:
S1 = 0;
while (test exp) {
a sequence of statements:
statement 1;
statement 2;

1ncrementing or decrementing the
loop variable
Si++;

© Bodenseo, Bernd Klein , 13 Mar 2008,

ndamentals of Perl

bodenseo

f or statement

for (<INITS> <TEST_EXP> <RE INTS>) {
#fbody Wi t h #aterrents

}
|

initialization condition re-initialization

<| NI TS> consists of a comma separated list of loop variable
initializations.

<TEST EXPR> is a condition which is affected by the variables
defined in <I NI TS>

<RE I NI TS> consists of a comma separated list of assignments
to the loop variables.

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo - Fundamentals of Perl

Example

The following script prints the square numbers from 1 to 100.

#! /usr/ bin/perl -w

for ($i=1; $i < 100; $i++) {
print "$i: " . $i**2 . "\n";
}

© Bodenseo, Bernd Klein , 13 Mar

bodenseo Ul mentals of Perl

infinite loops with whi | e and f or
for (;;) {

}

while (1) {

}

bodenseo damentals of Perl

f or each Loops

The foreach loop iterates over a list of values by setting a control
variable to each successive element of the list:

foreach $VAR (LI ST) {

lt's not necessary to use the f oreach keyword as f oreach
is just a synonym for the f or keyword.

© Bodenseo, Bernd Klein , 13 Mar 20

bodenseo

Example

#! /usr/ bin/perl -w

@ = (3, 4, 6, 8);
foreach $i (@) {

print $i**2 . "\n";
}

A “slight” modification with grave consequences:

@ = (3, 4, 6, 8);
foreach $i (@) {
$i = $i**2 . "\n";
print $i;
}

@ has changedto (9, 16, 36, 64)

’ © Bodenseo, Bernd Klein , 13 Mar 200

| Fa of Perl

bodenseo ndamentals of Perl

Labelling Loops

A label can be put on a loop to name it.

This label identifies the toop for the loop-control operators
* next

e |ast
* redo

If the loop operators are used with a label, they use the loop with

this label otherwise the operator refers to the innermost enclosing
loop.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

next

ndamentals of Perl

next [LABEL]

The next command is like the continue statement in C; it
starts the next iteration of the loop:

line: while (<STDI N>) {
next line 1 f [#; # discard comments

}

If there exists a continue block, it will get executed even on

discarded lines. If the LABEL is omitted, the command refers to the
innermost enclosing loop.

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:107

http://www.cs.cmu.edu/People/rgs/pl-compound.html#while
http://www.cs.cmu.edu/People/rgs/pl-compound.html#if

bodenseo ndamentals of Perl

Example with next

$n = <STDIN>; # the final nunber
print "$n\n";
$count = O;
whil e ($count <= $n) {
set a conditional statenent to I nterrupt
i1 f ((($count % 4) == 0) && ($count '= 0)) {
print "$count is divisible by 4!'\n";
$count ++;
next ;

}

go on as usual
print $count."\n";
$count ++;

conti nue {
print $count."\n";
$count ++;
b
print "That's all! Task finished!";

© Bodenseo, Bernd Klein , 13 Mar 2008, T

bodenseo ndamentals of Perl

last
| ast [LABEL]

The | ast command is like the break statement in C (as used in
loops); it immediately exits the loop in question.

If the LABEL is omitted, the command refers to the innermost
enclosing loop.

The continue block, if any, is not executed:

line: while (<STDI N>) {
last line i f /7"$/: # exit when done
W th header

}

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Example with next and | ast

ny $count = O;

LINE: while (<STDI N>) {
next LINE if /~#/; # skip coment |Ines
next LINE if /7*$/; # skip blank |ines

print; N

last LINE i f /eeel;
} continue {

$count ++;
}

print "$count |ines have been input!\n";

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:110

bodenseo i damentals of Perl

redo

redo [LABEL]

The redo command restarts the loop block without evaluating the
conditional again. The continue block, if any, is not executed. If

the LABEL is omitted, the command refers to the innermost
enclosing loop.

© Bodenseo, Bernd Klein , 13 Mar 2008

bodenseo

Example

mentals of Perl

bad luck, an infinite | oop:
$counter = 1;
while ($counter < 20) {

redo if ($counter == 13);

print "counter: $counter\n";
}
conti nue {

$count er ++;

}s

© Bodenseo, Bernd Klein , 13 M 2008,

bodenseo " Fundamentals of Perl

Bare Blocks

It's obvious, that a block, regardless if labeled or not, is
semantically equivalent to a loop which executes just once.

Exceptions:
* Not true for the blocks in eval {}, sub {} and do {}.
e loop controls dontwork with | f and unl ess either.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo " Fundamentals of Perl

Trick for do {}

By embedding a bare block inside the curly braces of a do-
statements, we can use next and r edo controls:

do {{
next if ;
sonme statenents foll ow ng
}}ounti b L.l
A way to use | ast :
{
do {
last 1 f ...;
sonme statenents foll ow ng
} while ...
}

© Bodenseo, Bernd Klein , 13 Mar 2008,

- Fundamentals of Perl

bodenseo

do {} Trick, continued

To include both next and last in the do {} we need labels.

DO LAST: {
do {
DO NEXT: {
next DO NEXT i f ...;
| ast DO LAST if ...;
sone statenents foll ow ng

}
} while ...;

© Bodenseo, Bernd Klein , 13 Mar 20

Fundamentals of Perl

bodenseo

Case and Switch in Perl

Perl has no case or switch statement unlike many other
programming languages.

But it's very easy to simulate the behaviour with bare blocks.

SWTCH. {
if (...) { $abc = 1; last SWTCH, }
if (/...1) { $def = 1; last SWTCH, }
it (/...1) { $xyz = 1; last SWTCH, }
$nothing = 1;

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:116

bodenseo . Fundamentals of Perl

Case and Switch in Perl, cont.

an alternative:

SWTCH. {
[“abc/ &% do { $abc = 1; last SWTCH, };
[Ndef / & do { $def = 1; last SWTCH, };
["xyzl & & do { $xyz = 1; last SWTCH };

$not hing = 1;

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Subroutines

A subroutine, also called sub or a “user function” is
defined in a Perl program by using the following
construct:

sub subnane {
st atenent 1;
st at enent 2;
st at enent _3;

}

The name of the subroutine (subnane) which is any name like
the names for scalar variables, arrays, and hashes.

The function names come from a different namespace, so a
scalar variable $f 00, an array @ oo, a hash % 00, and now a
f 00 would define different objects.

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:118

bodenseo ~ Fundamentals of Perl

Subroutine Example

sub hell o you know who {
$nunber of tinmes call ed++;
print “Hello World!'\n”;

}

This subroutine is called like this:
hel | o_you know who() ;

© Bodenseo, Bernd Klein , 13 Mar 200

bodenseo ' Fundamentals of Perl

Return Values

The value of the subroutine invocation is called the return value.

The return value of a subroutine is the value of the return statement
or of the last expression evaluated in the subroutine.

sub areaOCrcle {
$radius = $ [0];
return(3.1415 * ($radius ** 2));

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Positioning Subroutine definitions
Subroutine definitions can be placed anywhere in a script.

It's recommended to place the subroutines in one “area’, i.e. the
beginning (C-Style) or at the end (Perl-Style).

Subroutine definitions are always global, i.e. there are no local
subroutines.

In case there are two subroutines with the same name, the later one
overwrites the earlier one.

By default, any variable used within the body of a subroutine refers
to a global variable, but there are exceptions.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:121

bodenseo

- Fundamentals of Perl

Arguments

In Perl, the subroutine call is followed by a an (possibly empty)

list within parentheses.

The values of this list are automatically assigned to a special

variable named @ for the duration of the subroutine.

sub ListSum {

$sum = 0O; # initialize the sum
foreach $x (@) {
$sum += $x; # add el enment
}
return $sum # sumof all elenents

}
print ListSun(1,2,3,4,5,6);

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:122

bodense Fundamentals of Perl

Global
and

local
Variables

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:123

bodenseo Fundamentals of Perl

Subroutines: Local Variables

The @ _variable is local to a subroutine,
aswellas $_[0], $_[1]1, $_[2],

Other local variables can be declared with

| ocal (<conmma separated |ist of variable
nanes>) ;

The ny operator takes a list of variable names (instantiations) and
creates local versions of them.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:124

bodenseo ndamentals of Perl

Invoking a User Function

sub nmax {
1f ($[0] > $[1]) {
$_[0O];
} else {
$_[1];
}
}

print("enter first nunber: ");
$nunber 1l = <STDI N>;

chonmp($nunber 1) ;

print("enter second nunber: ");
$nunber 2 = <STDI N>;

chonmp($nunber 2) ;

$max = max($nunberl, $nunber 2);
print "max: $max\n";

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Fundamentals of Perl

Difference between ny and | ocal

sub PrintX {

}
sub Usi ngLocal {

print "x: $x\n";

| ocal ($x) = 5;

PrintX();
}

sub Usi ngMy {
my($x) = 5;
PrintX();

}

$x = 1;
PrintX();

ol

Usi ngLocal () ;

$x = 1;

PrintX();
Usi ngMy() ;

-

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Variables declared with | ocal are
visible in the function where they
are declared and in every function
called by this function. Whereas
values declared with my are only
visible in the function in which they
are declared.

Folie:126

bodenseo Fundamentals of Perl

Another difference

Whereas ny can only be used to declare

simple scalar, array, or hash variables with
alphanumeric names, | ocal doesn‘t have
these restrictions.

Perl‘s built-in variables, suchas $, $1,

and @ARGV, cannot be declared with ny,
but work fine with | ocal .

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:127

bodenseo

Fundamentals of Perl

Command-line Arguments

With Perl, comannd-line arguments are stored in an
array clalled @A\RGV, i.e. $ARGV[0] contains the first
argument, $ARGV[1] contains the 2nd argument, and so
on.

#! /[usr/ bi n/ per|

$numdrgs = $#ARGV + 1;
print "$numArgs command-|ine argunents.\n";
print "The argunents are:\n",;
foreach $argnum (0 .. $#ARGV) {
print "$ARGV[$argnum \ n";
}

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:128

Fundamentals of Perl

bodenseo

Exercise: Ackermann function

Write a programm using a recursive
funtion to calculate the Ackermann

funtion:
Almn) =(n + 1 I1f m=20
< A(m1l, 1) If m>0 and n =0
Alml, A(mn-1) If m>0 and n >0

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:129

bodenseo

Ackermann Function in Perl

sub A {

| ocal ($x, $y, $x_1, $y 1);

$x = $ [O];

Sy = $_[1];

1f ($x == 0) {
$y+1;

} elsif ($y == 0) {
$x 1 = $x - 1;
A($Sx 1, 1);

$x - 1;
$y - 1;
_1, A(Sx,$y_1));

© Bodenseo, Bernd Klein , 13 Mar 2008,

"~ Fundamentals of Perl

bodenseo

Ackermann Function: Results

ntals of Perl

n‘m O 1 3 4 1
0 |1 2 3 4 5 m+ |
1 (2 3 4 5 8 m+2
2 |3 5 7 9 11 i +3
3 5 13 29 61 125 8.2 -3
4 (13 |es533 | 98536 _ 9 o o ql9T28 1 (30056 _3) | a(3.ai43)) 22---2 _ 3 (m+3Teme)
5 | 65533 | a(465533) | al4al5,1) a3a(52) | al4a(53))
6 |aldl) |aidald1))|alda®1)) ald.alb.2)) ald.alb.3))

© Bodenseo, Bernd Klein , 1

bodenseo

undamentals of Perl

Some Further Insides

addi ti on:

a+t+b=a+1+1+... +1
N J
Y
b

mul tiplication

axXxXb=a+a+.... a
N\ _J

Y

b

exponenti ati on

a> = ax ax ... X a
|\ ~ J
b

tetration (hyper-4)
il

bg = a"?‘-'-

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

Fundamentals of Perl

Filehandles and File Tests

A filehandle in a Perl program is the
name for an I/O connection between \ a I
a Perl process and the outside world. 2 7 q T
STDIN is a filehandle, naming the SRt E "
connection between the Perl process

and the standard input. STDOUT |

(standard output) and STDERR |

(standard error output) are other |
filehandles.

It's customary to CAPITALIZE the names of filehandles.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:133

bodenseo indamentals of Perl

What is a Filehandle

In other words: A filehandle can be seen as a nickname for the
files used in the PERL script.

A handle is a temporary name assigned to a file. A good choice
for filehandle (name) is an abreviated version of the filename.

© Bodenseo, Bernd Klein , 13

bodenseo

e ndamentals of Perl

Opening and Closing

Filehandles have to be opened with the open()-statement, except
for STDIN, STDOUT and STDERR, which are automatically

opened.
$file = '/ honme/ honer/ addresses. t xt';
open(I NFO, $file); # OQpen the file

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

nentals of Perl

Opening for reading

Open a file for reading:

open (INFO, 'adresses.txt');
or
open (INFO, '<adresses.txt'),;

© Bodenseo, Bernd Klein

bodenseo damentals of Perl

Opening for writing

Open a file for writing:

open (NOTES, '>notes.txt');

o

If a file “notes.txt” already exists, it will be overwritten.
All existing data will be lost!

© Bodenseo, Bernd Klein , 1

bodenseo ndamentals of Perl

Opening for writing

Append to a file:

open (NOTES, '>>notes.txt"') ;

If a file “notes.txt” doesn't exists, open will
create one. A pointer is set to the end of the
file.

’ © Bodenseo, Bernd Klein , 1

bodenseo

ndamentals of Perl

Weird things about open

Parenthesis can be omitted, i.e.
open I NFO, $fil e;

The filename can be dropped as well, if a scalar variable with the
same name as the filehandle exists:

$I NFO = ' <addresses.txt';
open | NFO ;

@i nes = <| NFO>;

cl ose(1 NFO ;

print @I nes;

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Problems with open

Every forms of open returns true for success and false for
failure.

Reasons for failure:

Opening a file for input may fail, if
the file doesn‘t exist or
cannot be accessed because of permissions;

Opening a file for output may fail, if the file is

write-protected, or if
the directory is not writable or accessible.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:140

. Fundamentals of Perl

bodenseo

The cl ose Operator

If a script doesn‘t need the access to a file anymore, the file can
(may) be closed by the cl ose operator:

cl ose(FI LEHANDLE) ;

Reopening a filehandle also closes the previously opened file
automatically.

© Bodenseo, Bernd Klein , 153 Mar 2008,

bodenseo ~ Fundamentals of Perl

open the deeper way

So far, we had a look at the “open a la C”, it's closest to shell.

sysopen is the command for those who need a finer precision
the C's fopen|().

sysopen is a direct hook into the open system call.

sysopen HANDLE, PATH, FLAGS, [MASK]

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

sysopen

sysopen HANDLE, PATH, FLAGS, [MASK]

HANDLE argument is a filehandle just as with open PATH
a literal path without greater-thans or less-thans or
pipes or minuses

FLAGS contains one or more values derived from
the Fcntl module that have been or‘d together using
the bitwise ”|” operator.

MASK optional; if present, it is combined with the
user's current unmask for the creation mode
of the file. Usually omitted.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:143

bodenseo

'~ Fundamentals of Perl

sysopen, Constants from Fcntl

O _RDONLY Read only

O V\RONLY Wite only

O RDV\R Read and wite

O CREAT Create the file iIf
|t doesn't exist

O EXCL Fail if the file
al ready exists

O_APPEND Append to the file

O TRUNC Truncate the file

O NONBLOCK Non- bl ocki ng access

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:144

' Fundamentals of Perl

bodenseo

Examples with sysopen

Open a file for writing:
open(FH, "> $path");

corresponding sysopen:
sysopen(FH, $path, O VWRONLY | O TRUNC | O CREAT);

Open a file for appending:
open(FH, ">> $path");

corresponding sysopen:
sysopen(FH, $path, O WRONLY | O APPEND | O CREAT);

Folie:145

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseco "~ Fundamentals of Perl

Problems with open

A filehandle that couldn‘t be opened can still be used in the
program without a warning.

If you read from the filehandle, you'll get end-of-file right

away.
If you write to the filehandle, the data is silently
discarded.
Ugly solution:
unl ess (open (I NFO ">addresses.txt")) {

print "I couldn't create addresses.txt\n";
} else {

the rest of your program

}

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:146

bodenseo

The Perfect Solution
The di e function takes a list within
optional parentheses, gives out that list on
the standard error output, and then ends
the Perl process (program) with a nonzero
exit status

Fundamentals of Perl

unl ess (open (I NFO ">addresses.txt")) {
die "l couldn't create addresses.txt\n";
}

the rest of the program

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:147

"~ Fundamentals of Perl

bodenseo

Open that File or Die

open (I NFQO ">addresses.txt")||
die "I couldn't create addresses.txt\n";

the rest of the program

The |l (logical-or) makes sure that the die command gets
executed, only when the result of open is false.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Fundamentals of Perl

bodenseo

Read Lines from a File

Once a filehandle is open for reading, you can read lines from it the
way you read from standard input with STDIN

$file = "/ hone/ honer/addresses. txt"';

open(I NFO, $file); # Open the file

@i nes = <l NFO>; # Read It Into an array
cl ose(| NFO ; # Close the file

print @I nes; # Print the array

another way to do it:

open (I NFO "/ hone/ honmer/ addresses. txt");
while (<INFG>) {

chonp;

print "$ \n";
}

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:149

bodenseo

Write to a File

If a filehandle is open for writing (or appending), you can print to it
by using the print command immediately followed by the filehandle

before the other arguments.

print RESULTS "The value is: $n\n";

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

- Fundamentals of Perl

Exercise: CopyCat

Write a Perl script to copy
data from one file into
another file.

© Bodenseo, Bernd Klein , 13 Mar ‘

Fundamentals of Perl

bodenseo

Program: Copy File to File

#! /usr/ bin/perl/

$in file = "addresses. txt";
$out file = ">addresses2.txt";
open(IN,$in file) || die "cannot open $in file
for reading: $'";
open(QUT, $out _file) || die "cannot create
$out file: $!I'";
while (<IN>) { # read a line fromfile $a
into $_

print OQUT $_; # print that line to file $b
}
close(IN) || die "can't close S$in file: $!I";
cl ose(QUT) || die "can't close S$out file: $!'";

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:152

bodenseo Fundamentals of Perl

(just) to be on the safe side ...

It's easy to accidentally overwrite some existing file.

There is a command to test if a file exists. With -e $filevar you can
check if a file exists.

$in file = "addresses. txt";
I1f (-e $in file) {

print "The file $in file already exists";
} else {

print "The file $in file doesn't exist";
}

© Bodenseo, Bernd Klein , 13 Mar 2008,

Fundamentals of Perl

bodenseo

Other file tests

-r File or directory is readable
-w File or directory is witable
-X File or directory is executable
-0 File or directory is owned by user
-e File or directory exists
-z File exists and has zero size (directories are never enpty)
-s File or directory exists and has nonzero size
(the value is the size in bytes)

-f Entry is a plain file

-d Entry is a directory

-l Entry is a symink

-S Entry is a socket

-p Entry is a naned pipe (a "fifo")

-b Entry is a block-special file (1ike a nountable disk)
-c Entry is a character-special file (like an 1/0O device)

-k File or directory has the sticky bit set
-T File is "text"

-B File is "binary"

-M Modi fication age in days

-A Access age in days

-C I node-nodification age in days

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:154

bodenseo " Fundamentals of Perl

The Gory Details with st at
You want the whole “story” of a file?

check if STDINi1s interactive and pronpt if it is
print "File nane? " I f (-t STDI N);
chop ($nane = <STDI N>);

@il e data = stat($nanme);

@lescri ption =("device", "inode", "node", "links",
"user 1d", "group i1d", "device id", "size",
"accessed", "nodified", "changed", "Dbl ocksize",

"bl ock count");

foreach $index (0 .. $#description) {
printf "% 12s", $descri pti on[$i ndex] ;
print $file_data[$i ndex],"\n";

}

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:155

bodenseo Fundamentals of Perl

Difference: stat() and Istat()

If the argument is not a symbolic link st at () and | st at () supply
the same results.

If you invoke the stat function on the name of a symbolic link, it will
return information about the file the symbolic link points at (if
accessible) and not information on the symbolic link itself.

Istat provides information about the symbolic link itself.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:156

bodenseo

"~ Fundamentals of Perl

Exercises

1) Write a program to read a file and output
every line preceded with a line number
to another file

2) Write a program to read in a list of
filenames and then display which of the
files are readable, writable, and/or
executable, and which ones don't exist.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:157

bodenseo " Fundamentals of Perl

Reading Multiple Files
If no file handle is used with the diamond operator, Perl will check

the @ARGV variable. If @GARGV is empty, the diamond operator will
read from STDI N, 1. e. from keyboard or from a redirected file.

while (<>) {
print();

}

If called with

multiple file read. pl abc.txt efg.txt

the content of abc.ixt followed by efg.txt will be printed.

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:158

bodenseo ndamentals of Perl

Directory Access

The chdi r function takes a single argument - an expression

evaluating to a directory name to which the current directory will be
set.

chdi r returns t r ue when the script was able to change to the
requested directory and f al se if it wasn'.

chdir("/opt") || die "cannot cd to /opt ($!)";

Parenthesis are optional

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo

“Strange” usages of chdir

1f (chdir “/opt”) {
print “We got there!”;
} el se {

print “We go to tnp Instead!”;

chdir /tnp;
}

© Bodenseo, Bernd Klein , 13 Mar 200¢

" Fundamentals of Perl

bodenseo

Globbing

‘undamentals of Perl

The expansion of arguments like * or / honme/ honer / don* into a
list of matching filenames is called globbing.

To invoke globbing the pattern has to be put between angle
brackets or has to be the argument of the gl ob function.

</ opt/ kde* >;
gl ob("/etc/*ca*");

PO

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Directory Handles

opendi r DI RHANDLE, EXPR

opendi r opens a directory named EXPR for processing by
“readdir”, “telldir”, “seekdir”, “rewinddir”, and “closedir”.

It returns tr ue if successful. DI RHANDLE may be an
expression whose value can be used as an indirect dirhandle,
usually the real dirhandle name.

Dirhandless have their own namespace separate from
Filehandles.

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:162

bodenseo

Fundamentals of Perl

Reading a Directory Handle

When a directory handle is open, we can read the list of (file)names
with readdir, which takes a single parameter: the directory handle.

Each invocation of r eaddi r in a scalar context returns the next
filename (basename) in a random order.

If there are no more names, readdir returns undef .

If r eaddi r is invoked in a list context all the names are supplied as a
list.

© Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:163

bodenseo

i damentals of Perl

readdi r example

mny $dir =".
opendlr(DIR $d|r) or die $!;

while (ny $file = readdir(DR)) {
Use a regul ar expression to ignore
files beginning wth a
next if ($file =~ [[#]/]);
print "$file\n";

}
cl osedir (Dl R);
exit O;

© Bodenseo, Bernd Klein , 13 Mar 200

bodenseo Fundamentals of Perl

Removing a File

Like the unix/linux command rm,
the Perl unlink command removes
one name for a file.

If there is — typically the case —
just one name for a file, unlink is
removing the name and the file
itself.

unlink (“test.pl”);

The unlink function can take a
list of names to be unlinked:

unlink (“a.pl”, “b.pl");
unl 1 nk <*~>:

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:165

bodenseo Fundamentals of Perl

Return value of unl 1 nk

The return value of unlink is the number of files successfully
deleted.

If this number is equal to the number of files in the filelist given to
unlink, everything is fine. If this number is smaller, you are faced
with the gquestion, which files couldn‘t be deleted.

So stepping through the list might be better than the previous
approach:

foreach $file (<*~>)

unlink($file) || warn "having troubl e deleting
$file: $!'";
}

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

Folie:166

bodenseo ~ Fundamentals of Perl

Another often needed function is the renaming of files.

It's easy to accomplish:

renane($old file, $new file);

Of course, rename should be “guarded”:
renane(Raider, Twx) || die “Renam ng fail ed”

© Bodenseo, Bernd Klein , 13 Mar 200 | 8 Foliei167

bodenseo - Fundamentals of Perl

rename: difference to mv

In Unix/Linux the following commands are equivalent:

m/ tw X /opt/conp/ and
m/ tw x /opt/conp/tw X

Whereas in Perl the target filename has always to be given
explicitly:
rename(“tw x”, "/ opt/conp/tw Xx");

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo ndamentals of Perl

Hard and Soft Links

A hard link is indistinguishable from the original file.

The references to a file are counted.

-

© Bodenseo, Bernd Klein

bodenseo

Fundamentals of Perl

Restriction for Hardlinks

A hard link to a file must reside on the same mounted filesystem.

A hard link for a directory is not possible, because the filesystem is
strictly hierarchically organized. Allowing links to directories would
inevitably lead to a mish-mash.

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Symbolic Links

Also called “soft links”

If a symbolic link is used in a Perl command, the corresponding
linked file is used instead.

A symbolic link is a special file containing a pathname as data.

The contents of symlinks don‘t have to refer (point to) existing files
or directories.

Chains of symbolic links are possible.

’ © Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Creating Hard and Soft Links

| i nk($ol d filenane, $new fil ename)

A hardlink from the file $ol d_fi | enane to $new fil enane.
$ol d_fil ename must exist!

An example:
I | nk(ural dern’ utv\n'xn)
|| die “cannot link raider to tw x”;

Symbolic links are created in Perl with the symlink command:
sym ink(“raider”, “tw x")
|| die “cannot link raider to twx”;

Now “raider’” doesn‘t have to exist and “twix” can be on a different
filesystem.

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:172

ndamentals of Perl

bodenseo

Readlink

readl i nk(EXPR)
readl i nk EXPR

Returns the value of a symbolic link, if symbolic links are
implemented. If not, gives a fatal error. If there is some system error,
returns the undefined value and sets $! (errno). If EXPR is omitted, it

uses $§ .

I f (defined($x = readlink("twx"))) {
print "twi x points at '$x'\n";
}

¥ Folie173

© Bodenseo, Bernd Klein , 13 Mar 2008,

ndamentals of Perl

bodenseo

Making Directories

mkdi r (FI LENANE, MODE)

Creates the directory specified by FI LENAME, with permissions
specified by MODE. If it succeeds it returns 1, otherwise it returns O

and sets $! (errno).

nkdir("sweets",0755) || die "cannot nkdir
sweets: $!";

© Bodenseo, Bernd Klein , 13 Mar 2008,

ndamentals of Perl

bodenseo

Removing Directories

r ndi r (FI LENANE)
rndi v FI LENAVE

Deletes the directory specified by FI LENAME if it is empty. If it
succeeds it returns 1, otherwise it returns O and sets $!
(errno). If Fl LENAME is omitted, uses $_.

rndir("sweets") || die "cannot rndir sweets:$!";

" Folie:175

© Bodenseo, Bernd Klein , 13 Mar 2008,

bodenseo Fundamentals of Perl

Linux/UNIX vs. Perl
File Permissions

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:176

bodenseo nentals of Perl

jupiter:/honme/ Debra > |Is -1

dr wxr - xr - X 2 bernd users 35 2003-10-25 11:43 Dokunente

dr wxr - Xr - X 2 bernd users 35 2003-10-25 11:44 Mail

dr wxr - Xr - X 7 bernd users 287 2003-10-25 13:18 Kursunterl agen
-TW-r--1-- 1 bernd users 187 2003-11-10 19:36 zitat.txt
-TW-r--r-- 1 bernd users 46992 2003-11-11 19:09 shell.jpg

- T WXT--T - - 1 bernd users 42288 2003-11-11 19:09 pipe.qgif

jupiter:/home/ Debra >

L 2 3 4 5 6 7 8 9 10
Other Permissions

Type Read Write Execute Read Write Execute Read Write Execute
d r w X r = X r - X

© Bodenseo, Bernd Kiei T

bodenseo Fundamentals of Perl

Modifying Permissions

Under Linux/UNIX permissions on a file are changed with the
chnmod command.

Similarly, Perl changes permissions using a function with the same
name.

The permissions on a file or directory define who can do what to
that file or directory.

The chmod function takes an octal numeric number as the mode
and a list of filenames. “Perl” tries to alter the permissions of all
the filenames to the indicated mode.

chnod(0644, " honmer”,”li1sa”,”bart”, " marge”) ;

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:178

bodenseo

chmod

© Bodenseo, Bernd / ‘ T

bodenseco fundamentals of Perl

Return value of chmod

The return value of chmod is the number of files successfully
adjusted, regardless if the adjustment is different to the previous
setting.

foreach $file ("honer","marge") {
unl ess chnod (0644, $file) {
warn "Coul dn't chnod $file: $!'";
}

© Bodenseo, Bernd Klein , 13 Mar 2008, Folie:180

bodenseo | NS / indamentals of Perl

Change
Ownership

© Bodenseo, Bernd Klein ,]

bodenseo Fundamentals of Perl

chown

Every file, directory, device or whatever in the filesystem has an
owner and belongs to a group.

The owner and group of a file determine to whom the owner
and group permissions, i.e. read, write, and/or execute, apply .

The owner and group of a file are set with the creation of the file,
but in many cases it's necessary to change them later on.

The Perl command to accomplish this:
chown LI ST

The LIST consists of UID, GID and a list of files to be changed

chown (1004, 4711, “apples”, “oranges”,”bananas’”);

’ © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:182

