
 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:1

 bodenseo Advanced Perl

AdvancedAdvanced
PerlPerl

© Bernd Klein© Bernd Klein

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:2

 bodenseo Advanced Perl

Quote

Griet to Vermeer:
(after seeing her own portrait):

You looked inside meYou looked inside me

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:3

 bodenseo Advanced Perl

Regular
Expressions

Pattern
Matching

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:4

 bodenseo Advanced Perl

Pattern Matching

● A pattern is a sequence of characters to
be searched for in a character string
– /pattern/

● Match operators
– =~: tests whether a pattern

is matched
– !~: tests whether patterns

is not matched

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:5

 bodenseo Advanced Perl

Definition

A regular expression is a pattern to be matched against a string.

This matching either succeeds ot fails.

Sometimes, this is all we are interested in.

At other times, we want to do some changes to the string if the
pattern matches in a certain way.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:6

 bodenseo Advanced Perl

grep, sed, and the like

Regular expressions can be found in many UNIX/Linux commands:
grep, sed, awk, vi, ed, emacs and in most shells.

The regular expressions of Perl are a semantic superset of all these
commands and programs, i.e. any regular expression of one of
those tools can be expressed in Perl, but not necessarily in the
same syntax

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:7

 bodenseo Advanced Perl

Simple Word Matching

The simplest regexp is just a word, or more generally, a string
of characters.

A regexp consisting of a word matches any string that contains
that word.

$the_simpsons =~ /homer/

The simplest regexp is just a word, or more generally, a string
of characters.

A regexp consisting of a word matches any string that contains
that word.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:8

 bodenseo Advanced Perl

Simple Word Matching

The simplest regexp is just a word, or
 more generally, a string of characters.

A regexp consisting of a word matches
any string that contains that word.

$the_simpsons =~ /homer/

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:9

 bodenseo Advanced Perl

Simple Word Matching, Example

$the_simpsons = "homer marge bart lisa maggie";
if ($the_simpsons =~ /homer/) {
 print "homer is a member of the Simpsons
family!\n";
} else {
 print "homer is not a member of the Simpsons
family!\n";
}

This script can be improved by including a variable into the regular
expression instead of “homer”.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:10

 bodenseo Advanced Perl

Improved Script

print "Name? ";
chomp ($name =<STDIN>);

$the_simpsons = "homer marge bart lisa maggie";
if ($the_simpsons =~ /$name/) {
 print "$name is a member of the Simpsons
family!\n";
} else {
 print "$name is not a member of the Simpsons
family!\n";
}

The next disturbing thing: Names have to be typed in lower case.

We can make the test case-incensitive by appending an i to
/$name/

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:11

 bodenseo Advanced Perl

Case-insensitive Matching with /i

print "Name? ";
chomp ($name =<STDIN>);

$the_simpsons = "homer marge bart lisa maggie";
if ($the_simpsons =~ /$name/i) {
 print "$name is a member of the Simpsons
family!\n";
} else {
 print "$name is not a member of the Simpsons
family!\n";
}

Now we make the previous example case-insensitive:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:12

 bodenseo Advanced Perl

Substitute Operator

The substitute operator replaces the part of a string that matches
the regular expression with another given string.

It is similar to the s command of the sed tool of UNIX/Linux.

s/be/have/;

The variable $_ is matched against the regular expression be. If the
match is successful, the matching part of the string will be replaced
by the replacement string have.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:13

 bodenseo Advanced Perl

Substitute Example

$_ = "To be or not to be that is the
question!";
s/be/have/;
print "$_\n";

The script above prints the following line:

To have or not to be that is the question!

What if the programmer had in mind to change both “be”s with
“have”?

No problem! The option g makes sure that every – not just the
first from left – will be replaced.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:14

 bodenseo Advanced Perl

Substitute Example with “g”

$_ = "To be or not to be that is the question!";
s/be/have/g;
print "$_\n";

The extended script prints now the following line:

To have or not to have that is the question!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:15

 bodenseo Advanced Perl

\ Quote the next metacharacter
^ Match the beginning of the line
. Match any character (except newline)
$ Match the end of the line (or before

newline at the end)
| Alternation (matches either the

expression preceding or following |)
() Grouping regular expressions
[] Character class
{} Range of Occurences

Metacharacters

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:16

 bodenseo Advanced Perl

Quantifier Metacharacters

* Match 0 or more times

+ Match 1 or more times

? Match 1 or 0 times

{n} Match exactly n times

{n,} Match at least n times

{n,m} Match at least n but not
more than m times

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:17

 bodenseo Advanced Perl

Examples with Metacharacters

Whats wrong with the following expressions?

“1+ 1 = 3” =~ /1+1/;
“/data/proj1/gtk/abc.odf” =~ /gtk/abc.odf/;

The correct version:

“1+ 1 = 3” =~ /1\+1/;
“/data/proj1/gtk/abc.odf” =~ /gtk\/abc\.odf/;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:18

 bodenseo Advanced Perl

Emulation of UNIX/Linux grep

#!/usr/bin/perl

$regexp = shift;
while (<>) {
 print if /$regexp/;
}

The following script is a simple emulation of the grep
command.
If the script is saved as simple_grep, it can be
invoked with:

> simple_grep homer addresses.txt

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:19

 bodenseo Advanced Perl

Using Character Classes

A character class make it possible to use a set of
possible characters rather than just a single
character.

They are denoted by brackets [...]

/[bcefhor]at/;

This pattern can match the words:
bat, cat, eat, fat, hat, oat, rat

Changing it a little bit, we can match all the English 3-letter words
ending with at.

/[a-z]at/i;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:20

 bodenseo Advanced Perl

Special Characters in Character Classes

\ escape character

- denotes a range of characters, e.g. a-z
exception: in the first or last position it stands for a regular
character

] end marker for the character class

^ in the first position denotes the negated character class, e.g.
[^0-9] stands for “every character except a digit”

$ is special, as it is used with scalar variables

Other characters are not special within the bracket context!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:21

 bodenseo Advanced Perl

Fat, Cat, Rat, Eat, Oat and the LikeFat, Cat, Rat, Eat, Oat and the Like

Just relaxJust relax
 before it before it
gets gets
tricky.tricky.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:22

 bodenseo Advanced Perl

Tricky Example

$x = 'force';

/[$x]at/;

/[\$x]at/;

/[\\$x]at/;

matches: fat, oat, rat,

cat, eat

matches: $at or xat

matches: \at, fat, oat,

rat, cat, eat

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:23

 bodenseo Advanced Perl

Predefined Character Classes

\w Match a "word" character
(alphanumeric plus "_")

\W Match a non-"word" character
\s Match a whitespace character
\S Match a non-whitespace character
\d Match a digit character
\D Match a non-digit character

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:24

 bodenseo Advanced Perl

Freedom of choice

The pattern /homer/ is a shortcut for m/homer/

If you use m as a prefix, you don't have to stick to a pair of slashes as
delimeters.

This means, that the
following
expressions are equivalent:
m(homer)
m<homer>
m{homer}
m[homer]

Even more astonishing:
m,homer,
m!homer!
m^homer^
and many others

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:25

 bodenseo Advanced Perl

Hierarchical Matching

Parts of a regular expression can be grouped by enclosing them in
parenthesis (grouping metacharacters).

/(friend|hard|war)ship/
matches 'friendship', 'hardship', 'warship'

Matching year numbers by prefixing the century:

/(19|20|)\d\d/;

Note the | after the 20 to match year numbers without century
prefix!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:26

 bodenseo Advanced Perl

Character Classes and Alternation
The alternation metacharacter | can be used to match different
possible words or character strings.

Example:
/homer|marge|bart|lisa|maggie/

The Character Classes are like special cases of the alternation for
single characters.

/a|b|c/ matches the same strings as /[abc]/

There is a difference between the patterns /ho||hom|homer/ and
/homer|hom|ho/.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:27

 bodenseo Advanced Perl

Extracting Matched Substrings

Besides grouping regular expressions, grouping parenthesis allows
the extraction of the substrings of a string that matched the group.

$date_and_time = "Thu Jan 24 15:12:01 CET 2008";

$expr = '^(\w+)\s(\w+)\s(\d+)\s(\d\d:\d\d:\d\d)\s(\w+)\s(\d{4})';

$date_and_time =~ /$expr/;

$1 $2 $3 $4 $5 $6

$^N is set to the result of the last completed capture group.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:28

 bodenseo Advanced Perl

Backreferences

Backreferences (\1,\2, ...) are matching variables (like $1,
$2, ...) that can be used inside a regular expression.

With the help of a backreference earlier matched substrings can
be matched again.

Task:
Check for doubled words in a text, like the typical “the the”

Solution:
/\b(\w+)\s\1\b/

Check with:
grep.pl '\b(\w+)\s\1\b' 1984.txt

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:29

 bodenseo Advanced Perl

Extended Regular Expressions

The regular expressions can be extended with a pair of
parentheses with a question mark at the first position within the
parentheses.

The character after the question mark determines the function of
the extension.

(? ...)◊
a character to define the function, e.g. ':',
'=', '!' etc.)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:30

 bodenseo Advanced Perl

Non-capturing Groupings

Groupings with parentheses () have two functions:

1) group regexp elements as a single unit, and

2) capture (extract) substrings that matched the regexp in the
grouping.

(?:regexp) allows to group a regexp as a single unit without
extracting a substring or setting a matching variable e.g. $1.

$1-$4 are set, but we only need $1 and $4
/([+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)/;

$1 = whole number, $2 = exponent
/([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE]([+-]?\d+))?)/;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:31

 bodenseo Advanced Perl

Extensions

(?#text) A comment. The “text” is ignored.

(?:...) This groups things like "(...)" but doesn't make backreferences.

(?=...) A zero-width positive lookahead assertion. For example, /\w+(?=\t)/
matches a word followed by a tab, without including the tab in $&.

(?!...) A zero-width negative lookahead assertion. For example, /foo(?!bar)/
matches any occurrence of "foo" that isn't followed by "bar".

(?<=...) A zero-width positive lookbehind assertion. For example, /(?<=bad)boy/
matches the word boy that follows bad, without including bad in $&. This
only works for fixed-width lookbehind.

(?<!=...) A zero-width negative lookbehind assertion. For example, /(?<!=bad)boy/
matches any occurrence of "boy" that doesn't follow "bad". This only
works for fixed-width lookbehind.

(?>...) Matches the substring that the standalone pattern would match if
anchored at the given position.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:32

 bodenseo Advanced Perl

Further Extensions

(?(condition)yes-pattern|no-pattern)

(?(condition)yes-pattern)

A pattern is determined by a condition. The condition should be either an
integer, which is "true" if the pair of parentheses corresponding to the integer
has matched, or a lookahead, lookbehind, or evaluate, zero-width assertion.
The no-pattern will be used to match if the condition was not meant, but it is
also optional.

(?imsx-imsx)

One or more embedded pattern-match modifiers. Modifiers are switched off if
they follow a - (dash).

Modifier Meaning

i Do case-insensitive pattern matching
m Treat string as multiple lines
s Treat string as single line
x Use extended regular expressions

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:33

 bodenseo Advanced Perl

Pattern Code Expression

The pattern code expression is like a regular code expression,
except that the result of the code evaluation is treated as a regular
expression and matched immediately.

$repetitions = 5;
$char = 'a';
$x = 'aaaaabb';
the x in the next line means "use
extended expressions"
$x =~ /(??{$char x $repetitions})/x;

It's like
$x =~ /(aaaaa)/x;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:34

 bodenseo Advanced Perl

Fibonacci Sequence

$s0 = 0; $s1 = 1; # initial conditions
$x = "1101010010001000001";
print "It is a Fibonacci sequence\n"
 if $x =~ /^1 # match an initial '1'
 (
 (??{'0' x $s0}) # match $s0 of '0'
 1 # and then a '1'
 (?{
 $largest = $s0; # largest seq so far
 $s2 = $s1 + $s0; # compute next term
 $s0 = $s1; # in Fibonacci sequence
 $s1 = $s2;
 })
)+ # repeat as needed
 $ # that is all there is
 /x;
print "Largest sequence matched was $largest\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:35

 bodenseo Advanced Perl

Previous regexp without /x

 /^1((??{'0'x$s0})1(?{$largest=$s0;$s2=$s1+
$s0$s0=$s1;$s1=$s2;}))+$/;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:36

 bodenseo Advanced Perl

Fibonacci Sequence, even trickier

$s0 = ''; $s1 = '0'; # initial conditions
$x = "1101010010001000001";
print "It is a Fibonacci sequence\n"
 if $x =~ /^1 # match an initial '1'
 (?:
 ((??{ $s0 })) # match some '0'
 1 # and then a '1'

 (?{ $s0 = $s1; $s1 .= $^N; })
)+ # repeat as needed
 $ # that is all there is
 /x;
printf "Largest sequence matched was %d\n", length($s1)-
length($s0);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:37

 bodenseo Advanced Perl

Exercise

1) Write an expression to check for
words consisting of two identical
parts.

2) Write a programm to find the
palindrome words in a text

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:38

 bodenseo Advanced Perl

Solution

1) Words consisting of two identical parts:

/\b(\w+)\1\b/

2) Palindrome words in a text

while (<>) {
 print $1 ,"\n" if /\b((\w+)\w?(??{reverse
$2}))\b/ig;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:39

 bodenseo Advanced Perl

All About All About
Strings Strings

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:40

 bodenseo Advanced Perl

The Perl String

One of the most useful features of Perl is its text processing and
manipulation abilities. At the heart of its powerful string manipulation
facilities.

Perl's string functions can be used to (among other things)
● print and format strings,
● split and join string values,
● alter string case, and
● perform regular expression searches.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:41

 bodenseo Advanced Perl

Finding a Substring with index
$position = index($haystack, $needle);

Perl locates the first
occurrence of the
string $needle in
the string
$haystack and
returns an integer,
indicating the
location of its first
character.

If $needle can't be located inside $haystack a -1 will be
returned. 0 if $needle matches first letter of $haystack and
(n – 1) for the nth position in $haystack.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:42

 bodenseo Advanced Perl

Example: index
$dr_seuss="shuffle, duffle, muzzle, muff";

$p=index($dr_seuss, "uff");
print "$p\n";
$p=index($dr_seuss, "uff", $p+1);
print "$p\n";
$p=index($dr_seuss, "uff", $p+1);
print "$p\n";

10

 2

26

Finding the last occurrence of the substring with rindex()

$p = rindex($dr_seuss, "uffle");
print "$p\n";
$p = rindex($dr_seuss, "uffle", $p + 1);
print "$p\n";
$p = rindex($dr_seuss, "uffle", $p + 1);
print "$p\n";

 2

10

 -1

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:43

 bodenseo Advanced Perl

Manipulating a Substring with substr

$ulysses= “like mad and yes I said yes I will Yes.”

$phrase = substr($ulysses,17,10);
print "$phrase\n";
$phrase = substr($ulysses,13,10);
print "$phrase\n";
$u = $ulysses;
$phrase = substr($u,rindex($u,"yes"),-6);
print "$phrase\n";

 “I said yes”

 “yes I said”

substr takes two or three arguments:
● a string value (the one where a substring will be cut off)
● the initial position of the substring
● the length of the substring

 “yes I will”

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:44

 bodenseo Advanced Perl

Cut and Paste with substr()
$cover = "yes she said yes she will Yes.";
$needle = "she";
$prefix = "like mad and ";
substr($cover,
 index($cover, $needle),
 length($needle))="I";
print "$cover\n";
substr($cover,
 index($cover, $needle),
 length($needle))="I";
print "$cover\n";
$ulysses = $prefix . $cover;
print "$ulysses\n";

 “like mad and yes I said yes I will Yes.”

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:45

 bodenseo Advanced Perl

Formatting Output with printf

$x = "she";
printf "yes %s said yes %s will Yes.\n", $x, $x;

The format, the first string following the printf command,
contains the conversions:

(%) sign followed by a letter or letters.

There should be the same number of items in the following list
as there are conversions; if these don't match up, it won't work
correctly.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:46

 bodenseo Advanced Perl

Printing numbers with printf

The easiest way to print a number with printf is %g, the
“general” numeric conversion.

printf “%g, %g\n”, 4*3, 1/3;

%d prints decimal integers, truncated (not rounded) if necessary:

printf "Number of items: %d\n", 7.35;

printf "The answer to life ... %3d\n",
21.03*1.9998;

Number of items: 7

The answer to life ... 42

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:47

 bodenseo Advanced Perl

Floating-Point Conversion

printf "%8f\n", 21/34;
printf "%8.0f\n", 21/34;
printf "%8.2f\n", 21/34;
printf "%8.5f\n", 21/34;
printf "%8.9f\n", 21/34;

0.617647
 1
 0.62
 0.61765
0.617647059

General format of %f:

%<number of digits>.<digits after the decimal point>f

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:48

 bodenseo Advanced Perl

Exercise

Write a program that asks the
user to enter a list of strings on
seperate lines.
Find the longest line
($max_line) and print each
string right-justified in a ${max-
line}-column.
What has to be changed to print
the lines left-justified?

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:49

 bodenseo Advanced Perl

Solution

print "Enter your lines, press Ctrl-D or Ctrl-Z
to finish!\n";
chomp(my @lines = <STDIN>);
print "1234567890" x 7, "12345\n"; # ruler line

find longest line
$max_line = 0;
foreach (@lines) {
 if ($max_line < length($_)) {

$max_line = length($_);
 }
}
foreach (@lines) {
 printf "%${max_line}s\n", $_;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:50

 bodenseo Advanced Perl

The Split Function

You can also specify how many pieces to split the string into.

The split() function is used to split a string into smaller sections.

A string can be split on

● a single character,

● a group of characers or

a regular expression (a pattern).

The substrings are placed into an array

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:51

 bodenseo Advanced Perl

Example

my $data = 'George Bush,1600 Pennsylvania Avenue
NW,Washington,DC 20500';

my @parts = split(',', $data);

foreach my $x (@parts) {
 print "$x\n";
}

This script produces the following output:

George Bush
1600 Pennsylvania Avenue NW
Washington
DC 20500

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:52

 bodenseo Advanced Perl

Example with Regular Expressions

my $data = 'surname: Bush, prename: George,
profession: president';

my @parts = split(/,* * \w*:/, $data);
foreach my $x (@parts) {
 print "$x\n";
}

This script produces the following output:

Bush
George
president

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:53

 bodenseo Advanced Perl

The Join Function

The join() function is inverse to split(). It can be used to
(re)join the array elements (a list of values), i.e. the values will be
glued together with a glue string between the parts.

join()takes two arguments:

1) the glue, a scalar variable to use as a separator
2) an array

It returns a string that contains the elements of the array
“glued together” by the given separator

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:54

 bodenseo Advanced Perl

The Join Function: Example

my $data = 'George Bush,1600 Pennsylvania Avenue
NW,Washington,DC 20500';
my @parts = split(',', $data);
my $data2 = join(", ",@parts);
if ($data == $data2) {
 print "equal";
} else {
 print "not equal";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:55

 bodenseo Advanced Perl

Exercises

1) Write a regular expression that matches:
a) any number of backslashes followed by an

arbitrary number of asteriisks
b) at least three but not more than five

consecutive copies of whatever is contained
in a variable $container.

c) at least five characters, including newline
d) the same word written two or more times in

a row with possibly varying number of
whitespaces between them. A word is a
nonempty sequence of nowhitespace
characters.

2) Write a script to print the login name and the
real name of each user in /etc/passwd

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:56

 bodenseo Advanced Perl

Answers

1) Write a regular expression that matches:
a) any number of backslashes followed by an arbitrary number of asteriisks
/***/

b) at least three but not more than five consecutive copies of whatever is contained in
a variable $container.

/($container){3,5}/
c) any five characters, including newline

/(.|\n){5,}/
d) the same word written two or more times in a row with possibly varying number of

whitespaces between them. A word is a nonempty sequence of nowhitespace
characters.

/(^|\s)(\S+)(\s+\2)+(\s|$)/
2) Write a script to print the login name and the real name of each

user in /etc/passwd

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:57

 bodenseo Advanced Perl

Answers

Write a script to print the login name and the real name of each user in /etc/passwd:

while (<STDIN>) {
 chomp;
 ($user, $rname) = (split /:/)[0,4];
 ($real) = split(/,/, $rname);
 print "The real name of $user is $real\n";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:58

 bodenseo Advanced Perl

Converting Other Languages to Perl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:59

 bodenseo Advanced Perl

Converting awk to Perl

Perl is a lot more comprehensive than awk, but most of
awk can be found in a similar form in Perl. So Perl is a kind
of superset of awk.

Hardly surprising, there is an “awk to Perl”-converter:

a2p AwkFile.awk

A converted awk script will usually perform the
identical functionality, often with an increase in speed,
and without any of awk's built-in limits on line lengths,
parameter counts and others.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:60

 bodenseo Advanced Perl

Example

The simplest awk script is the one just “echoing” the input (file)
again.

{
 print $0;
}

while (<>) {
 chomp;
 print $_;
}

The following Perl code has the same functionality:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:61

 bodenseo Advanced Perl

Invoking a2p yields the following code
#!/usr/bin/perl
eval 'exec /usr/bin/perl -S $0 ${1+"$@"}'
 if $running_under_some_shell;
 # this emulates #! processing on NIH
machines.
 # (remove #! line above if
indigestible)

eval '$'.$1.'$2;' while $ARGV[0] =~ /^([A-Za-z_0-9]+=)(.*)/
&& shift;
 # process any FOO=bar switches

#!/usr/bin/perl

$, = ' '; # set output field separator
$\ = "\n"; # set output record separator

while (<>) {
 chomp; # strip record separator

 print $_;
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:62

 bodenseo Advanced Perl

Exercise

Translate an awk script by
using a2p or not, which
checks for lines in 1984.txt,
in which the words “Big
Brother” and “watching”
appear, into Perl.

/[bB]ig [bB]rother.*watching/ {print $0};

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:63

 bodenseo Advanced Perl

The solution

Translate an awk script, which checks for lines in which the words
“Big Brother” and “watching” appear, into Perl.

/[bB]ig [bB]rother.*watching/ {print $0};

The Perl equivalent:

while (<>) {
 chomp;
 if (/[bB]ig [bB]rother.*watching/) {
 print $_;
 }
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:64

 bodenseo Advanced Perl

Converting sed Programs to Perl

The sed-to-Perl translator is called s2p.
It works similar to a2ps.

Changing all instances of “Big Brother” into “Little Brother”, can be
done with sed by invoking

sed “s/Big Brother/Little Brother/g” 1984.txt

This script can be transformed into Perl code by invoking:

echo "s/Big/Little/g" | s2p -f -

This results into 121 lines of code!

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:65

 bodenseo Advanced Perl

References

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:66

 bodenseo Advanced Perl

References

References are what the name
implies, a reference or a pointer
to another object.

There are symbolic
and hard references.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:67

 bodenseo Advanced Perl

References: Hard and Soft

$x 1.618034 $x 1.618034

$y x$y

$x = 1.618034
$y = \$x

$x = 1.618034
$y = “x”

A hard link A soft link

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:68

 bodenseo Advanced Perl

Example with References

$joyce = "Stately, plump Buck Mulligan";
$james = \$joyce;
print "$$james $joyce\n";
$joyce = "came from the stairhead";

print "$$james $joyce\n";

The output of the above script:

Stately, plump Buck Mulligan Stately, plump Buck
Mulligan
came from the stairhead came from the stairhead

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:69

 bodenseo Advanced Perl

Anonymous Data

$pi_ref = \3.14159265358979

The value of π can only be accessed via the reference $pi_ref,
as there is no “regular” scalar variable associated to the value.

It's called an anonymous referent.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:70

 bodenseo Advanced Perl

Anonymous Arrays

A reference to an array can be created directly, i.e. without
creating an intervening named array.

$some_simpsons = ['homer', 'marge', 'bart'];

There are two ways to access the elements of an anonymous
array:

$$some_simpsons[1]
$some_simpsons->[0]

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:71

 bodenseo Advanced Perl

Stepping Through an Anonymous Array

An anonymous array can be addressed with e.g.
@$some_simpsons

foreach $name (@$some_simpsons) {
 print "$name\n";
}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:72

 bodenseo Advanced Perl

Anonymous Hashes

As easy to create as anonymous arrays:

$simpsons = { 'Homer' => 'fat and stupid',
 'Marge' => 'patient and affable',
 'Bart' => 'cheeky and lazy',
 'Lisa' => 'clever and musical',
 'Maggie' => 'cute'

};

$simpsons->{Homer}
$$simpsons{Marge}

There are also two ways to access an anonymous hash:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:73

 bodenseo Advanced Perl

Packages

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:74

 bodenseo Advanced Perl

Packages

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:75

 bodenseo Advanced Perl

Packages in Perl

If more than one programmer are working together, the risk is
rising that the same names are used for variables, functions etc.

The same is true, if you merge together two or more Perl
programms.

Packages are used in Perl to partition the global namespace.

Every global identifier (variables, functions, file and directory
handles, and formats) consists of two parts: its package name
separated by a double colon (::) from the actual identifier.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:76

 bodenseo Advanced Perl

Setting the Default Package Prefix

package is a compile-time declaration that sets the default
package prefix for unqualified global identifiers.

If no package declaration is given, a default package called main
is valid.

A package declaration is valid until

➔ the end of the current scope (a brace-enclosed block, file, or
eval)

➔ a subsequent package statement in the same scope.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:77

 bodenseo Advanced Perl

Example
$x = 1;
{
 package Pack1;
 $x = 2;
 print "x in Pack1: $x\n";
}
print "x outside Pack1: $x\n";
package Pack2;
$x = 3;
print "x in Pack2: $x\n";
print "main::x in Pack2: $main::x\n";

Output:
x in Pack1: 2
x outside
Pack1: 1
x in Pack2: 3
main::x in
Pack2: 1

$main::x$main::x$main::x

$Pack2::x

$Pack1::x

$main::x

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:78

 bodenseo Advanced Perl

Forced to be in main

The identifiers STDIN, STDOUT,
STDERR, ARGV, ARGVOUT, ENV,
INC, SIG and the punctuation names like
$_ and $. are forced to bei in main.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:79

 bodenseo Advanced Perl

Modules

Principally, a module is just a package defined in a file with the
same name and the extension .pm.

A module name should be capitalized unless it's a pragma.

Perl is distributed with a large number of modules.
They can be found e.g. in /usr/lib/perl5/5.8.8/ (name
and path depending on the used Perl distribution)

Perl modules are typically included in a program with:

use MODULE LIST;

or:
use MODULE;

It's not necessary to write
MODULE.pm

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:80

 bodenseo Advanced Perl

use or require?

The use statement does a preload of a MODULE at compile time
and then an import of the requested symbols.

A module can be included into a program either with use or
require.

require does not necessarily pull in the module at compile time.

use can have a list of strings naming entities, which need to be
imported from the module.

example:
use module qw(const1, const2, func1, func2);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:81

 bodenseo Advanced Perl

Example with Math::Complex

use Math::Complex;
$z = Math::Complex->make(5, 6);
$z = cplx(5, 6); # shorter than previous line
$t = 4 - 3*i + $z; # do standard complex math
print "$t\n"; # prints 9+3i

print sqrt(-2), "\n"; # prints i

print sin($z);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:82

 bodenseo Advanced Perl

Creating Modules

package HelloWorld;

sub say_hello {
 return "Hello, World!";
}

1;

A Module “as basic as basic can be”:

The name in the package declaration must match the name of
the file, i.e. HelloWorld.pm

The module has to return a true value. That's why the line
with “1;” is included.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:83

 bodenseo Advanced Perl

Script Using the Module

A script using our simple module:

#!/usr/bin/perl
use HelloWorld;
print HelloWorld::say_hello()."\n";

A module can be pulled into a script with Perl's use command.
use automatically searches all the paths in the array @INC
until it finds a file with the specified name and a .pm extension.

An additional path can be included with
BEGIN { push @INC, '/my/dir' } # or
BEGIN { unshift @INC, '/my/dir' } # or
use lib '/my/dir';

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:84

 bodenseo Advanced Perl

my and our in the package

package HelloWorld;

use strict;

our $VERSION=0.1;
my $hello_string="Hello World!";

sub say_hello {
 return $hello_string;
}

1;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:85

 bodenseo Advanced Perl

Invoking the Changed Package

#!/usr/bin/perl

use strict;
use HelloWorld;
print "Using version: $HelloWorld::VERSION
of HelloWorld.\n";
print HelloWorld::say_hello()."\n";

As $hello_string is a “my” variable in the package, so it cannot be
accessed from the script, not even by fully qualifying it!

The script can be called now with use strict 0.1 but called
with “use strict 0.2” will not load our module, because the
version number would have to be equal or higher than 0.2.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:86

 bodenseo Advanced Perl

Invoking the Changed Package

In the previous example, we have to address variable $VERSION
and the function say_hello() with a fully qualified notation.

If we address them without “HelloWorld::” as a prefix, we get the
error messages:

Global symbol "$VERSION" requires explicit package name at
HelloWorld.pl line 7.
Execution of HelloWorld.pl aborted due to compilation errors.

The following slides provide a package with correct exporting.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:87

 bodenseo Advanced Perl

The Complete HelloWorld Module
package HelloWorld;
use strict;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(say_hello);
our $VERSION=0.1;
my $hello_string="Hello World!";
sub say_hello {
 return $hello_string;
}
1;

#!/usr/bin/perl

use strict;
use HelloWorld qw(say_hello);
print "Using version: $HelloWorld::VERSION of
HelloWorld.\n";
print say_hello()."\n";

Defines, that we want
to utilize the export
facilities of the
standard Perl module
Exporter.

The import routine in
Exporter will be called
each time our module
is used.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:88

 bodenseo Advanced Perl

The Complete HelloWorld Module
package HelloWorld;
use strict;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(say_hello);
our $VERSION=0.1;
my $hello_string="Hello World!";
sub say_hello {
 return $hello_string;
}
1;

#!/usr/bin/perl

use strict;
use HelloWorld qw(say_hello);
print "Using version: $HelloWorld::VERSION of
HelloWorld.\n";
print say_hello()."\n";

The module will inherit
functions from the
exporter module.

It will be the name of
the import module
when the module will
be used

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:89

 bodenseo Advanced Perl

The Complete HelloWorld Module
package HelloWorld;
use strict;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(say_hello);
our $VERSION=0.1;
my $hello_string="Hello World!";
sub say_hello {
 return $hello_string;
}
1;

#!/usr/bin/perl

use strict;
use HelloWorld qw(say_hello);
print "Using version: $HelloWorld::VERSION of
HelloWorld.\n";
print say_hello()."\n";

A list of variable names
that will be exportable
to programs using this
module.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:90

 bodenseo Advanced Perl

The Complete HelloWorld Module
package HelloWorld;
use strict;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(say_hello);
our $VERSION=0.1;
my $hello_string="Hello World!";
sub say_hello {
 return $hello_string;
}
1;

#!/usr/bin/perl

use strict;
use HelloWorld qw(say_hello);
print "Using version: $HelloWorld::VERSION of
HelloWorld.\n";
print say_hello()."\n";

The use statement
contains a list of the
module symbols that
should be imported
into the namespace of
the script.

But it will be still
possible to access
$VERSION with its fully
qualified name.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:91

 bodenseo Advanced Perl

Automatic Export

The following version of our module exports say_hello automatically,
so that it doesn't have to be in the symbol list of the use statement
of the calling script.

package HelloWorld;

use strict;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT = qw(say_hello);
our $VERSION=0.1;
my $hello_string="Hello World!";
sub say_hello {
 return $hello_string;
}
1;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:92

 bodenseo Advanced Perl

Exercise

Add a method in the HelloWorld
module which prints a personal
greeting, i.e. the method is called
with a parameter, the name of the
one to be greeted.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:93

 bodenseo Advanced Perl

Solution, .pm
package HelloWorld_personal;

use strict;
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT = qw(say_hello say_name);
our $VERSION=0.2;
my $hello_string="Hello World!";

sub say_hello {
 return $hello_string;
}
sub say_name {
 return $_[0];
}
1;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:94

 bodenseo Advanced Perl

Solution: .pl

#!/usr/bin/perl

use strict;
use HelloWorld_personal;

print "Using version:
$HelloWorld_personal::VERSION of HelloWorld.\n";
print say_hello()."\n";
print say_name("Stephen")."\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:95

 bodenseo Advanced Perl

Objects and Classes

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:96

 bodenseo Advanced Perl

Advantage

In programs like Java you are forced to use objects to write
programms.

Perl allows you to use as many or as few object-oriented
techniques as you want.

Nevertheless Perl offers the whole arsenal of object oriented
programming: classes, objects, single and multiple inheritance,
instance methods and class methods, constructors and
destructors, operator overloading and so on

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:97

 bodenseo Advanced Perl

Criticism
Edsger W. Dijkstra wrote: “... what society overwhelmingly asks for
is snake oil. Of course, the snake oil has the most impressive
names —otherwise you would be selling nothing— like "Structured
Analysis and Design", "Software Engineering", "Maturity Models",
"Management Information Systems", "Integrated Project Support
Environments" "Object Orientation" and "Business Process Re-
engineering" (the latter three being known as IPSE, OO and BPR,
respectively)."

Alexander Stepanov suggested that OOP provides a mathematically-
limited viewpoint and called it, "almost as much of a hoax as
Artificial Intelligence"

“I used OOP when working on the Lisp Machine window systems,
and I disagree with the usual view that it is a superior way to
program.” (Richard Stallman, 1995)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:98

 bodenseo Advanced Perl

Object Oriented Programming in Perl

Object-oriented programming (OOP) is a
programming paradigm that uses "objects" and their
interactions to design applications and computer
programs.

It is based on several techniques:
➔ encapsulation
➔ modularity
➔ polymorphism
➔ inheritance
➔ abstraction

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:99

 bodenseo Advanced Perl

Perltoot -
Tom's object-oriented tutorial for perl

“Object-oriented programming is a big seller these days. Some
managers would rather have objects than sliced bread. Why is
that?”

“An object is nothing but a way of tucking away complex behaviours
into a neat little easy-to-use bundle. (This is what professors call
abstraction.) Smart people who have nothing to do but sit around
for weeks on end figuring out really hard problems make these nifty
objects that even regular people can use. (This is what professors
call software reuse.) Users (well, programmers) can play with this
little bundle all they want, but they aren't to open it up and mess
with the insides. Just like an expensive piece of hardware, the
contract says that you void the warranty if you muck with the cover.
So don't do that.”

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:100

 bodenseo Advanced Perl

Some Simple Definitions

2. A class is simply a package that happens to
provide methods to deal with object references.

3. A method is a function associated with a class or
object. In other words: It's simply a subroutine that
expects an object reference (or a package name, for
class methods) as the first argument.

1. An object is simply a reference that happens to
know which class it belongs to.
In other words: An object is a variable that belongs to
a class.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:101

 bodenseo Advanced Perl

Steps to Create a Class

package Person;

sub new {
my $class = shift;
my $self = { @_ };
bless $self, $class;

}

sub get_first {
my $self = shift;
return the first name
$self->{'first'};

}

Build a package

Bless a referent
to create an object

Subroutines
create methods

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:102

 bodenseo Advanced Perl

Using Classes

use Person;

$Buck = new Person('first' => 'Malachi',
'last' => 'Mulligan');

$Molly = new Person('first' => 'Molly',
'last' => 'Tweedy');

print $Buck->get_last()."'s first name: \n";
print $Buck->get_first(), "\n";
print $Molly->get_last() . "'s first name: \n";
print $Molly->get_first(), "\n";

$Molly->set_last('Bloom');
print $Molly->get_first() . " has married now \n”;
print “and is called " . $Molly->get_last().“\n";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:103

 bodenseo Advanced Perl

Inheritance

Human BeingHuman Being

GermanGermanFrenchFrenchEnglishEnglish ChineseChinese KoreanKorean

EuropeanEuropean AsianAsian

CorsicanCorsican BavarianBavarian “is a”

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:104

 bodenseo Advanced Perl

Employee --> Person

Every Employee is a
Person.

We will extend our
example
with a class “Employee”.

It inherits the methods
of Person.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:105

 bodenseo Advanced Perl

Employee Class
@ISA = qw(Person);
my $BasePhone = "089/898-";

method for setting and getting the values
sub internal_phone {

my $self = shift;
if (@_) { $self->{'internal_phone'} = shift }
$self->{'internal_phone'};

}

sub company_phone {
my $self = shift;
if (@_) { $BasePhone = shift }
$BasePhone . $self->{'internal_phone'};

}

1;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:106

 bodenseo Advanced Perl

Improvement to Method company_phone

sub company_phone {
my $self = shift;
if (@_) { $BasePhone = shift }
if ($self->{'internal_phone'}) {
 $BasePhone . $self->{'internal_phone'};
} else {
 $BasePhone . "0";
}

}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:107

 bodenseo Advanced Perl

Method Overloading

Method overloading is a feature found in various object
oriented programming languages such as C#, C++ and
Java that allows the creation of several functions with the
same name which differ from each other in terms of the
type of the input and the type of the output of the
function.

Java Example:

public Fraction(int num, int den);
public Fraction(Fraction F);
public Fraction();

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:108

 bodenseo Advanced Perl

Method Overloading, cont.

Code by Dave Cross
to deal with previous

Java example in
Perl

We need only one method in Perl to deal with the three Java
methods. Method overloading as shown in the example is not
needed in Perl.

file:///home/bernd/bodenseo/kurse/perl/perl_examples/fraction_dave_cross.pl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:109

 bodenseo Advanced Perl

Operator Overloading

Formal definition:
Operator overloading is a special case of polymorphism
in which some or all operators like +, =, >= aso. have
different implementations depending on the types of
their arguments.

Some overloadings are defined by the language others
are implemented by the programmer.

Overloading offers a way to write
a + b * c
instead of
add(a, multiply(b,c))

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:110

 bodenseo Advanced Perl

Example: Vector Class

A vector class with arbitrary dimension.

A method to add to vectors and a print function.

Usage looks like this:

#!/usr/bin/perl
use Vector;

$v1 = new Vector(1, 2, 3, 4, 5);
$v2 = new Vector(3, 4, 5, 2, 1);

$res = $v1 + $v2;
$res->print;

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:111

 bodenseo Advanced Perl

Vector Class: add method

(
1
2
3
4
5)+ =(

3
4
5
2
1) (

1+3
2+4
3+5
4+2
5+1)

sub add {
my ($X, $Y, $class);
my ($arg) = @_;

if (ref $arg eq 'Vector') {
($X, $Y) = @_

} else {
($class, $X, $Y) = @_;

}
my @sum;
for (my $counter=0; $counter < @$X; $counter++) {

push @sum, $X->[$counter] + $Y->[$counter];
}
return Vector->new(@sum);

}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:112

 bodenseo Advanced Perl

Vector Class: print vector

sub print {
my $self = shift;
print "[";
for (my $counter=0;

$counter < @$self;
$counter++) {

print $self->[$counter] . " ";
}
print "]\n";

}

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:113

 bodenseo Advanced Perl

The Complete Vector Class

The Package

Script Using
the Package

file:///home/bernd/bodenseo/kurse/perl/perl_examples/vector1/Vector.pm
file:///home/bernd/bodenseo/kurse/perl/perl_examples/vector1/Vector.pl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:114

 bodenseo Advanced Perl

Exercise

Enrich the vector class with two
methods:
sub to subtract to vectors and a
scalar multiplication.

(
1
2
3
4
5)- =(

3
4
5
2
1) (

1-3
2-4
3-5
4-2
5-1) 5 * =(

3
4
5
2
1) (

5*3
5*4
5*5
5*2
5*1)

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:115

 bodenseo Advanced Perl

Solution: the Extended Vector Class

The Package

Script Using
the Package

file:///home/bernd/bodenseo/kurse/perl/perl_examples/vector2/Vector.pm
file:///home/bernd/bodenseo/kurse/perl/perl_examples/vector2/Vector.pl

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:116

 bodenseo Advanced Perl

Overriding Methods

Let's create a special class of employees

They don't like their direct phone number to be published.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:117

 bodenseo Advanced Perl

Manager Class
package Manager;
@ISA = qw(Employee);

sub internal_phone {
my $self = shift;
"hidden"

}
sub set_phone {

my $self = shift;
"hidden";

}
sub get_phone {

my $self = shift;
"hidden";

}
1;

The Manager class
overrides the methods
internal_phone(),
set_phone() and
get_phone() of
Employee.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:118

 bodenseo Advanced Perl

Process Management

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:119

 bodenseo Advanced Perl

Process Management

A Perl program can launch new
processes, i.e. child processes.

There is more than one way to do so.

The easiest way to launch a
new process is to use the
system function.

Example:
system(“date”);

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:120

 bodenseo Advanced Perl

Input and output of system()

system()

STDIN

STDERR STDOUT

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:121

 bodenseo Advanced Perl

Changing the Standard Output

system("date >date.txt") && die "problems with date()";

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:122

 bodenseo Advanced Perl

Inheriting
A child process inherits from its parent: e.g. the current umask,
current directory, and the user ID.

All environment variables are inherited by the child.

These variables are typically altered by the csh setenv command
or the corresponding assignment and export by the /bin/sh shell.

Within Perl you can examine and alter environment variables
through a hash called %ENV.

Each key of this hash corresponds to a name of an environment
variable.

This hash contains (if not changed in the script) the environment
handed to Perl by the parent shell; altering the hash affects the
environment used by Perl and by its child processes, but not the
parent.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:123

 bodenseo Advanced Perl

Print the Environment Variables

foreach $key (%ENV) {
 print "$key=$ENV{$key}\n";
}

A simple script to look at the environment variables:

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:124

 bodenseo Advanced Perl

Background Processes

While a child process, started with system() is running, the Perl
script will have to wait until it finishes, regardless how long it takes.

A shell command can be launched with an ampersand at the end of
the command line. Causing the process to be run in the
background.

system "some_command_name &"

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:125

 bodenseo Advanced Perl

The exec Function
The syntax and semantics of the exec function is nearly the same as
system function, except for one thing: The system function creates
a child process, which is performing the requested action while Perl
has to wait for it to finish.

The exec function causes the Perl process itself to perform the
requested action.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:126

 bodenseo Advanced Perl

Closure

A closure is a function that is evaluated in
an environment containing one or more
bound variables. When called, the function
can access these variables. The explicit
use of closures is associated with
functional programming and with
languages such as ML and Lisp.
Constructs such as objects in other
languages can also be modeled with
closures.

 © Bodenseo, Bernd Klein , 13 Mar 2008, Folie:127

 bodenseo Advanced Perl

Closure: Example

sub make_counter {
 my $start = shift;
 return sub { $start++ }
}

my $from_ten = make_counter(10);
my $from_three = make_counter(3);

print $from_ten->()."\n"; # 10
print $from_ten->()."\n"; # 11
print $from_three->()."\n"; # 3
print $from_ten->()."\n"; # 12
print $from_three->()."\n"; # 4

